Difference between revisions of "009C Sample Midterm 1, Problem 1"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
Line 14: | Line 14: | ||
|- | |- | ||
| | | | ||
− | Suppose that <math style="vertical-align: -11px">\lim_{x\rightarrow \infty} f(x)</math>& | + | Suppose that <math style="vertical-align: -11px">\lim_{x\rightarrow \infty} f(x)</math> and <math style="vertical-align: -11px">\lim_{x\rightarrow \infty} g(x)</math> are both zero or both <math style="vertical-align: -1px">\pm \infty .</math> |
|- | |- | ||
| | | | ||
− | If <math style="vertical-align: -19px">\lim_{x\rightarrow \infty} \frac{f'(x)}{g'(x)}</math>& | + | If <math style="vertical-align: -19px">\lim_{x\rightarrow \infty} \frac{f'(x)}{g'(x)}</math> is finite or <math style="vertical-align: -4px">\pm \infty ,</math> |
|- | |- | ||
| | | | ||
− | then <math style="vertical-align: -19px">\lim_{x\rightarrow \infty} \frac{f(x)}{g(x)}\,=\,\lim_{x\rightarrow \infty} \frac{f'(x)}{g'(x)}.</math> | + | then <math style="vertical-align: -19px">\lim_{x\rightarrow \infty} \frac{f(x)}{g(x)}\,=\,\lim_{x\rightarrow \infty} \frac{f'(x)}{g'(x)}.</math> |
|} | |} | ||
Line 37: | Line 37: | ||
| <math>\lim_{n\rightarrow \infty} n=\infty.</math> | | <math>\lim_{n\rightarrow \infty} n=\infty.</math> | ||
|- | |- | ||
− | |Therefore, the limit has the form <math style="vertical-align: -11px">\frac{\infty}{\infty},</math> | + | |Therefore, the limit has the form <math style="vertical-align: -11px">\frac{\infty}{\infty},</math> |
|- | |- | ||
|which means that we can use L'Hopital's Rule to calculate this limit. | |which means that we can use L'Hopital's Rule to calculate this limit. | ||
Line 45: | Line 45: | ||
!Step 2: | !Step 2: | ||
|- | |- | ||
− | |First, switch to the variable <math style="vertical-align: 0px">x</math> so that we have functions and | + | |First, switch to the variable <math style="vertical-align: 0px">x</math> so that we have functions and |
|- | |- | ||
|can take derivatives. Thus, using L'Hopital's Rule, we have | |can take derivatives. Thus, using L'Hopital's Rule, we have |
Revision as of 18:48, 26 February 2017
Does the following sequence converge or diverge?
If the sequence converges, also find the limit of the sequence.
Be sure to jusify your answers!
Foundations: |
---|
L'Hôpital's Rule |
Suppose that and are both zero or both |
If is finite or |
then |
Solution:
Step 1: |
---|
First, notice that |
and |
Therefore, the limit has the form |
which means that we can use L'Hopital's Rule to calculate this limit. |
Step 2: |
---|
First, switch to the variable so that we have functions and |
can take derivatives. Thus, using L'Hopital's Rule, we have |
Final Answer: |
---|