Difference between revisions of "009B Sample Midterm 3, Problem 5"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
| Line 9: | Line 9: | ||
!Foundations: | !Foundations: | ||
|- | |- | ||
| − | |'''1.''' Recall the trig identity | + | |'''1.''' Recall the trig identity <math style="vertical-align: -3px">\tan^2x+1=\sec^2x</math> |
|- | |- | ||
| − | | | + | |'''2.''' Recall the trig identity <math style="vertical-align: -13px">\sin^2(x)=\frac{1-\cos(2x)}{2}</math> |
|- | |- | ||
| − | + | |'''3.''' How would you integrate <math style="vertical-align: -1px">\tan x~dx?</math> | |
| − | |||
| − | |||
| − | |||
| − | |'''3.''' How would you integrate <math style="vertical-align: -1px">\tan x~dx?</math> | ||
|- | |- | ||
| | | | ||
| − | You could use <math style="vertical-align: 0px">u</math>-substitution. | + | You could use <math style="vertical-align: 0px">u</math>-substitution. |
|- | |- | ||
| − | | First, write <math style="vertical-align: -14px">\int \tan x~dx=\int \frac{\sin x}{\cos x}~dx.</math> | + | | First, write <math style="vertical-align: -14px">\int \tan x~dx=\int \frac{\sin x}{\cos x}~dx.</math> |
|- | |- | ||
| | | | ||
| − | Now, let <math style="vertical-align: -5px">u=\cos(x).</math> Then, <math style="vertical-align: -5px">du=-\sin(x)dx.</math> | + | Now, let <math style="vertical-align: -5px">u=\cos(x).</math> Then, <math style="vertical-align: -5px">du=-\sin(x)dx.</math> |
|- | |- | ||
| Thus, | | Thus, | ||
| Line 51: | Line 47: | ||
<math style="vertical-align: -14px">\int \tan^3x~dx=\int \tan^2x\tan x ~dx.</math> | <math style="vertical-align: -14px">\int \tan^3x~dx=\int \tan^2x\tan x ~dx.</math> | ||
|- | |- | ||
| − | |Since <math style="vertical-align: -5px">\tan^2x=\sec^2x-1,</math> we have | + | |Since <math style="vertical-align: -5px">\tan^2x=\sec^2x-1,</math> we have |
|- | |- | ||
| | | | ||
| Line 64: | Line 60: | ||
!Step 2: | !Step 2: | ||
|- | |- | ||
| − | |Now, we need to use <math>u</math>-substitution for the first integral. | + | |Now, we need to use <math>u</math>-substitution for the first integral. |
|- | |- | ||
| | | | ||
| − | Let <math style="vertical-align: -5px">u=\tan(x).</math> | + | Let <math style="vertical-align: -5px">u=\tan(x).</math> |
|- | |- | ||
| − | |Then, <math style="vertical-align: -1px">du=\sec^2x~dx.</math> | + | |Then, <math style="vertical-align: -1px">du=\sec^2x~dx.</math> |
|- | |- | ||
|So, we have | |So, we have | ||
| Line 86: | Line 82: | ||
!Step 3: | !Step 3: | ||
|- | |- | ||
| − | |For the remaining integral, we also need to use <math>u</math>-substitution. | + | |For the remaining integral, we also need to use <math>u</math>-substitution. |
|- | |- | ||
|First, we write | |First, we write | ||
| Line 93: | Line 89: | ||
<math style="vertical-align: -14px">\int \tan^3x~dx=\frac{\tan^2x}{2}-\int \frac{\sin x}{\cos x}~dx.</math> | <math style="vertical-align: -14px">\int \tan^3x~dx=\frac{\tan^2x}{2}-\int \frac{\sin x}{\cos x}~dx.</math> | ||
|- | |- | ||
| − | |Now, we let <math style="vertical-align: 0px">u=\cos x.</math> | + | |Now, we let <math style="vertical-align: 0px">u=\cos x.</math> |
|- | |- | ||
| − | |Then, <math style="vertical-align: -1px">du=-\sin x~dx.</math> | + | |Then, <math style="vertical-align: -1px">du=-\sin x~dx.</math> |
|- | |- | ||
|Therefore, we get | |Therefore, we get | ||
| Line 113: | Line 109: | ||
!Step 1: | !Step 1: | ||
|- | |- | ||
| − | |One of the double angle formulas is <math style="vertical-align: -5px">\cos(2x)=1-2\sin^2(x).</math> | + | |One of the double angle formulas is <math style="vertical-align: -5px">\cos(2x)=1-2\sin^2(x).</math> |
|- | |- | ||
| − | |Solving for <math style="vertical-align: -5px">\sin^2(x),</math> we get | + | |Solving for <math style="vertical-align: -5px">\sin^2(x),</math> we get |
|- | |- | ||
| <math style="vertical-align: -13px">\sin^2(x)=\frac{1-\cos(2x)}{2}.</math> | | <math style="vertical-align: -13px">\sin^2(x)=\frac{1-\cos(2x)}{2}.</math> | ||
| Line 145: | Line 141: | ||
!Step 3: | !Step 3: | ||
|- | |- | ||
| − | |For the remaining integral, we need to use <math style="vertical-align: 0px">u</math>-substitution. | + | |For the remaining integral, we need to use <math style="vertical-align: 0px">u</math>-substitution. |
|- | |- | ||
| − | |Let <math style="vertical-align: -1px">u=2x.</math> | + | |Let <math style="vertical-align: -1px">u=2x.</math> |
|- | |- | ||
| − | |Then, <math style="vertical-align: -1px">du=2~dx</math> and <math style="vertical-align: -18px">\frac{du}{2}=dx.</math> | + | |Then, <math style="vertical-align: -1px">du=2~dx</math> and <math style="vertical-align: -18px">\frac{du}{2}=dx.</math> |
|- | |- | ||
|Also, since this is a definite integral and we are using <math style="vertical-align: 0px">u</math>-substitution, | |Also, since this is a definite integral and we are using <math style="vertical-align: 0px">u</math>-substitution, | ||
| Line 155: | Line 151: | ||
|we need to change the bounds of integration. | |we need to change the bounds of integration. | ||
|- | |- | ||
| − | |We have <math style="vertical-align: -5px">u_1=2(0)=0</math> and <math style="vertical-align: -5px">u_2=2(\pi)=2\pi.</math> | + | |We have <math style="vertical-align: -5px">u_1=2(0)=0</math> and <math style="vertical-align: -5px">u_2=2(\pi)=2\pi.</math> |
|- | |- | ||
|So, the integral becomes | |So, the integral becomes | ||
Revision as of 18:44, 26 February 2017
Evaluate the indefinite and definite integrals.
(a)
(b)
| Foundations: |
|---|
| 1. Recall the trig identity |
| 2. Recall the trig identity |
| 3. How would you integrate |
|
You could use -substitution. |
| First, write |
|
Now, let Then, |
| Thus, |
|
|
Solution:
(a)
| Step 1: |
|---|
| We start by writing |
|
|
| Since we have |
|
|
| Step 2: |
|---|
| Now, we need to use -substitution for the first integral. |
|
Let |
| Then, |
| So, we have |
|
|
| Step 3: |
|---|
| For the remaining integral, we also need to use -substitution. |
| First, we write |
|
|
| Now, we let |
| Then, |
| Therefore, we get |
|
|
(b)
| Step 1: |
|---|
| One of the double angle formulas is |
| Solving for we get |
| Plugging this identity into our integral, we get |
|
|
| Step 2: |
|---|
| If we integrate the first integral, we get |
|
|
| Step 3: |
|---|
| For the remaining integral, we need to use -substitution. |
| Let |
| Then, and |
| Also, since this is a definite integral and we are using -substitution, |
| we need to change the bounds of integration. |
| We have and |
| So, the integral becomes |
|
|
| Final Answer: |
|---|
| (a) |
| (b) |