Difference between revisions of "009B Sample Midterm 2, Problem 2"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
Line 9: | Line 9: | ||
!Foundations: | !Foundations: | ||
|- | |- | ||
− | |How would you integrate <math style="vertical-align: -12px">\int (2x+1)\sqrt{x^2+x}~dx?</math> | + | |How would you integrate <math style="vertical-align: -12px">\int (2x+1)\sqrt{x^2+x}~dx?</math> |
|- | |- | ||
| | | | ||
− | You could use <math style="vertical-align: 0px">u</math>-substitution. | + | You could use <math style="vertical-align: 0px">u</math>-substitution. |
|- | |- | ||
− | | Let <math style="vertical-align: -2px">u=x^2+x.</math> | + | | Let <math style="vertical-align: -2px">u=x^2+x.</math> |
|- | |- | ||
− | | Then, <math style="vertical-align: -4px">du=(2x+1)~dx.</math> | + | | Then, <math style="vertical-align: -4px">du=(2x+1)~dx.</math> |
|- | |- | ||
| | | | ||
Line 71: | Line 71: | ||
!Step 1: | !Step 1: | ||
|- | |- | ||
− | |We use <math style="vertical-align: 0px">u</math>-substitution. | + | |We use <math style="vertical-align: 0px">u</math>-substitution. |
|- | |- | ||
− | |Let <math style="vertical-align: -2px">u=x^4+2x^2+4.</math> | + | |Let <math style="vertical-align: -2px">u=x^4+2x^2+4.</math> |
|- | |- | ||
− | |Then, <math style="vertical-align: -5px">du=(4x^3+4x)dx</math> and <math style="vertical-align: -14px">\frac{du}{4}=(x^3+x)dx.</math> | + | |Then, <math style="vertical-align: -5px">du=(4x^3+4x)dx</math> and <math style="vertical-align: -14px">\frac{du}{4}=(x^3+x)dx.</math> |
|- | |- | ||
|Also, we need to change the bounds of integration. | |Also, we need to change the bounds of integration. | ||
|- | |- | ||
− | |Plugging in our values into the equation <math style="vertical-align: -4px">u=x^4+2x^2+4,</math> | + | |Plugging in our values into the equation <math style="vertical-align: -4px">u=x^4+2x^2+4,</math> |
|- | |- | ||
− | |we get <math style="vertical-align: -5px">u_1=0^4+2(0)^2+4=4</math> and <math style="vertical-align: -5px">u_2=2^4+2(2)^2+4=28.</math> | + | |we get <math style="vertical-align: -5px">u_1=0^4+2(0)^2+4=4</math> and <math style="vertical-align: -5px">u_2=2^4+2(2)^2+4=28.</math> |
|- | |- | ||
|Therefore, the integral becomes | |Therefore, the integral becomes |
Revision as of 18:23, 26 February 2017
Evaluate
(a)
(b)
Foundations: |
---|
How would you integrate |
You could use -substitution. |
Let |
Then, |
Thus, |
|
Solution:
(a)
Step 1: |
---|
We multiply the product inside the integral to get |
|
Step 2: |
---|
We integrate to get |
We now evaluate to get |
|
(b)
Step 1: |
---|
We use -substitution. |
Let |
Then, and |
Also, we need to change the bounds of integration. |
Plugging in our values into the equation |
we get and |
Therefore, the integral becomes |
Step 2: |
---|
We now have |
|
Therefore, |
Final Answer: |
---|
(a) |
(b) |