Difference between revisions of "009B Sample Midterm 1, Problem 3"
		
		
		
		
		
		Jump to navigation
		Jump to search
		
				
		
		
	
Kayla Murray (talk | contribs)  | 
				Kayla Murray (talk | contribs)   | 
				||
| Line 13: | Line 13: | ||
|        <math style="vertical-align: -12px">\int u~dv=uv-\int v~du.</math>  | |        <math style="vertical-align: -12px">\int u~dv=uv-\int v~du.</math>  | ||
|-  | |-  | ||
| − | |'''2.''' How would you integrate <math style="vertical-align: -12px">\int x\ln x~dx?</math>  | + | |'''2.''' How would you integrate  <math style="vertical-align: -12px">\int x\ln x~dx?</math>  | 
|-  | |-  | ||
|  | |  | ||
| Line 19: | Line 19: | ||
|-  | |-  | ||
|  | |  | ||
| − |         Let <math style="vertical-align: -1px">u=\ln x</math> and <math style="vertical-align: 0px">dv=x~dx.</math>    | + |         Let  <math style="vertical-align: -1px">u=\ln x</math> and <math style="vertical-align: 0px">dv=x~dx.</math>    | 
|-  | |-  | ||
| − | |        Then, <math style="vertical-align: -13px">du=\frac{1}{x}dx</math> and <math style="vertical-align: -12px">v=\frac{x^2}{2}.</math>  | + | |        Then,  <math style="vertical-align: -13px">du=\frac{1}{x}dx</math> and  <math style="vertical-align: -12px">v=\frac{x^2}{2}.</math>  | 
|-  | |-  | ||
|  | |  | ||
| Line 40: | Line 40: | ||
|We proceed using integration by parts.    | |We proceed using integration by parts.    | ||
|-  | |-  | ||
| − | |Let <math style="vertical-align: 0px">u=x^2</math> and <math style="vertical-align: 0px">dv=e^xdx.</math>    | + | |Let  <math style="vertical-align: 0px">u=x^2</math> and  <math style="vertical-align: 0px">dv=e^xdx.</math>    | 
|-  | |-  | ||
| − | |Then, <math style="vertical-align: 0px">du=2xdx</math> and <math style="vertical-align: 0px">v=e^x.</math>  | + | |Then,  <math style="vertical-align: 0px">du=2xdx</math> and  <math style="vertical-align: 0px">v=e^x.</math>  | 
|-  | |-  | ||
|Therefore, we have  | |Therefore, we have  | ||
| Line 54: | Line 54: | ||
|Now, we need to use integration by parts again.    | |Now, we need to use integration by parts again.    | ||
|-  | |-  | ||
| − | |Let <math style="vertical-align: 0px">u=2x</math> and <math style="vertical-align: 0px">dv=e^xdx.</math>    | + | |Let  <math style="vertical-align: 0px">u=2x</math> and  <math style="vertical-align: 0px">dv=e^xdx.</math>    | 
|-  | |-  | ||
| − | |Then, <math style="vertical-align: 0px">du=2dx</math> and <math style="vertical-align: 0px">v=e^x.</math>  | + | |Then,  <math style="vertical-align: 0px">du=2dx</math> and  <math style="vertical-align: 0px">v=e^x.</math>  | 
|-  | |-  | ||
|Building on the previous step, we have  | |Building on the previous step, we have  | ||
| Line 73: | Line 73: | ||
|We proceed using integration by parts.    | |We proceed using integration by parts.    | ||
|-  | |-  | ||
| − | |Let <math style="vertical-align: -1px">u=\ln x</math> and <math style="vertical-align: 0px">dv=x^3dx.</math>    | + | |Let  <math style="vertical-align: -1px">u=\ln x</math>  and  <math style="vertical-align: 0px">dv=x^3dx.</math>    | 
|-  | |-  | ||
| − | |Then, <math style="vertical-align: -13px">du=\frac{1}{x}dx</math> and <math style="vertical-align: -14px">v=\frac{x^4}{4}.</math>  | + | |Then,  <math style="vertical-align: -13px">du=\frac{1}{x}dx</math>  and  <math style="vertical-align: -14px">v=\frac{x^4}{4}.</math>  | 
|-  | |-  | ||
|Therefore, we have  | |Therefore, we have  | ||
Revision as of 16:56, 26 February 2017
Evaluate the indefinite and definite integrals.
(a)
(b)
| Foundations: | 
|---|
| 1. Integration by parts tells us that | 
| 2. How would you integrate | 
| 
 You could use integration by parts.  | 
| 
 Let and  | 
| Then, and | 
| 
 
  | 
Solution:
(a)
| Step 1: | 
|---|
| We proceed using integration by parts. | 
| Let and | 
| Then, and | 
| Therefore, we have | 
| Step 2: | 
|---|
| Now, we need to use integration by parts again. | 
| Let and | 
| Then, and | 
| Building on the previous step, we have | 
(b)
| Step 1: | 
|---|
| We proceed using integration by parts. | 
| Let and | 
| Then, and | 
| Therefore, we have | 
| 
 
  | 
| Step 2: | 
|---|
| Now, we evaluate to get | 
| Final Answer: | 
|---|
| (a) | 
| (b) |