Difference between revisions of "009B Sample Midterm 1, Problem 3"

From Grad Wiki
Jump to navigation Jump to search
Line 13: Line 13:
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math style="vertical-align: -12px">\int u~dv=uv-\int v~du.</math>
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math style="vertical-align: -12px">\int u~dv=uv-\int v~du.</math>
 
|-
 
|-
|'''2.''' How would you integrate <math style="vertical-align: -12px">\int x\ln x~dx?</math>
+
|'''2.''' How would you integrate &nbsp;<math style="vertical-align: -12px">\int x\ln x~dx?</math>
 
|-
 
|-
 
|
 
|
Line 19: Line 19:
 
|-
 
|-
 
|
 
|
&nbsp; &nbsp; &nbsp; &nbsp; Let <math style="vertical-align: -1px">u=\ln x</math> and <math style="vertical-align: 0px">dv=x~dx.</math>  
+
&nbsp; &nbsp; &nbsp; &nbsp; Let &nbsp;<math style="vertical-align: -1px">u=\ln x</math> and <math style="vertical-align: 0px">dv=x~dx.</math>  
 
|-
 
|-
|&nbsp; &nbsp; &nbsp; &nbsp; Then, <math style="vertical-align: -13px">du=\frac{1}{x}dx</math> and <math style="vertical-align: -12px">v=\frac{x^2}{2}.</math>
+
|&nbsp; &nbsp; &nbsp; &nbsp; Then, &nbsp;<math style="vertical-align: -13px">du=\frac{1}{x}dx</math> and &nbsp;<math style="vertical-align: -12px">v=\frac{x^2}{2}.</math>
 
|-
 
|-
 
|
 
|
Line 40: Line 40:
 
|We proceed using integration by parts.  
 
|We proceed using integration by parts.  
 
|-
 
|-
|Let <math style="vertical-align: 0px">u=x^2</math> and <math style="vertical-align: 0px">dv=e^xdx.</math>  
+
|Let &nbsp;<math style="vertical-align: 0px">u=x^2</math> and &nbsp;<math style="vertical-align: 0px">dv=e^xdx.</math>  
 
|-
 
|-
|Then, <math style="vertical-align: 0px">du=2xdx</math> and <math style="vertical-align: 0px">v=e^x.</math>
+
|Then, &nbsp;<math style="vertical-align: 0px">du=2xdx</math> and &nbsp;<math style="vertical-align: 0px">v=e^x.</math>
 
|-
 
|-
 
|Therefore, we have
 
|Therefore, we have
Line 54: Line 54:
 
|Now, we need to use integration by parts again.  
 
|Now, we need to use integration by parts again.  
 
|-
 
|-
|Let <math style="vertical-align: 0px">u=2x</math> and <math style="vertical-align: 0px">dv=e^xdx.</math>  
+
|Let &nbsp;<math style="vertical-align: 0px">u=2x</math> and &nbsp;<math style="vertical-align: 0px">dv=e^xdx.</math>  
 
|-
 
|-
|Then, <math style="vertical-align: 0px">du=2dx</math> and <math style="vertical-align: 0px">v=e^x.</math>
+
|Then, &nbsp;<math style="vertical-align: 0px">du=2dx</math> and &nbsp;<math style="vertical-align: 0px">v=e^x.</math>
 
|-
 
|-
 
|Building on the previous step, we have
 
|Building on the previous step, we have
Line 73: Line 73:
 
|We proceed using integration by parts.  
 
|We proceed using integration by parts.  
 
|-
 
|-
|Let <math style="vertical-align: -1px">u=\ln x</math> and <math style="vertical-align: 0px">dv=x^3dx.</math>  
+
|Let &nbsp;<math style="vertical-align: -1px">u=\ln x</math>&nbsp; and &nbsp;<math style="vertical-align: 0px">dv=x^3dx.</math>  
 
|-
 
|-
|Then, <math style="vertical-align: -13px">du=\frac{1}{x}dx</math> and <math style="vertical-align: -14px">v=\frac{x^4}{4}.</math>
+
|Then, &nbsp;<math style="vertical-align: -13px">du=\frac{1}{x}dx</math>&nbsp; and &nbsp;<math style="vertical-align: -14px">v=\frac{x^4}{4}.</math>
 
|-
 
|-
 
|Therefore, we have
 
|Therefore, we have

Revision as of 17:56, 26 February 2017

Evaluate the indefinite and definite integrals.

(a)  

(b)  


Foundations:  
1. Integration by parts tells us that
       
2. How would you integrate  

        You could use integration by parts.

        Let   and

        Then,   and  

       


Solution:

(a)

Step 1:  
We proceed using integration by parts.
Let   and  
Then,   and  
Therefore, we have
       
Step 2:  
Now, we need to use integration by parts again.
Let   and  
Then,   and  
Building on the previous step, we have
       

(b)

Step 1:  
We proceed using integration by parts.
Let    and  
Then,    and  
Therefore, we have

       

Step 2:  
Now, we evaluate to get
       


Final Answer:  
    (a)    
    (b)    

Return to Sample Exam