Difference between revisions of "009A Sample Midterm 1, Problem 1"

From Grad Wiki
Jump to navigation Jump to search
Line 11: Line 11:
 
!Foundations:    
 
!Foundations:    
 
|-
 
|-
| '''1.''' If <math>\lim_{x\rightarrow a} g(x)\neq 0</math>, we have
+
| '''1.''' If <math style="vertical-align: -12px">\lim_{x\rightarrow a} g(x)\neq 0,</math> we have
 
|-
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\lim_{x\rightarrow a} \frac{f(x)}{g(x)}=\frac{\displaystyle{\lim_{x\rightarrow a} f(x)}}{\displaystyle{\lim_{x\rightarrow a} g(x)}}.</math>
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\lim_{x\rightarrow a} \frac{f(x)}{g(x)}=\frac{\displaystyle{\lim_{x\rightarrow a} f(x)}}{\displaystyle{\lim_{x\rightarrow a} g(x)}}.</math>
 
|-
 
|-
| '''2.''' <math>\lim_{x\rightarrow 0} \frac{\sin x}{x}=1</math>
+
| '''2.''' <math style="vertical-align: -14px">\lim_{x\rightarrow 0} \frac{\sin x}{x}=1</math>
 
|}
 
|}
  
Line 25: Line 25:
 
!Step 1: &nbsp;  
 
!Step 1: &nbsp;  
 
|-
 
|-
|Since <math>\lim_{x\rightarrow 2} x =2\ne 0,</math>
+
|Since <math style="vertical-align: -12px">\lim_{x\rightarrow 2} x =2\ne 0,</math>
 
|-
 
|-
 
|we have
 
|we have
Line 57: Line 57:
 
!Step 3: &nbsp;
 
!Step 3: &nbsp;
 
|-
 
|-
|Solving for <math>\lim_{x\rightarrow 2} g(x)</math> in the last equation,
+
|Solving for <math style="vertical-align: -12px">\lim_{x\rightarrow 2} g(x)</math> in the last equation,
 
|-
 
|-
 
|we get
 
|we get
Line 92: Line 92:
 
!Step 1: &nbsp;  
 
!Step 1: &nbsp;  
 
|-
 
|-
|When we plug in <math>-3</math> into <math>\frac{x}{x^2-9},</math>
+
|When we plug in <math style="vertical-align: 0px">-3</math> into &nbsp; <math style="vertical-align: -12px">\frac{x}{x^2-9},</math>
 
|-
 
|-
|we get <math>\frac{-3}{0}.</math>  
+
|we get &nbsp; <math style="vertical-align: -12px">\frac{-3}{0}.</math>  
 
|-
 
|-
 
|Thus,  
 
|Thus,  
Line 100: Line 100:
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\lim_{x\rightarrow -3^+} \frac{x}{x^2-9}</math>  
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\lim_{x\rightarrow -3^+} \frac{x}{x^2-9}</math>  
 
|-
 
|-
|is either equal to <math>+\infty</math> or <math>-\infty.</math>
+
|is either equal to <math style="vertical-align: -1px">+\infty</math> or <math style="vertical-align: -1px">-\infty.</math>
 
|}
 
|}
  
Line 110: Line 110:
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\lim_{x\rightarrow -3^+} \frac{x}{x^2-9}=\lim_{x\rightarrow -3^+} \frac{x}{(x-3)(x+3)}.</math>
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\lim_{x\rightarrow -3^+} \frac{x}{x^2-9}=\lim_{x\rightarrow -3^+} \frac{x}{(x-3)(x+3)}.</math>
 
|-
 
|-
|We are taking a right hand limit. So, we are looking at values of <math>x</math>  
+
|We are taking a right hand limit. So, we are looking at values of <math style="vertical-align: 0px">x</math>  
 
|-
 
|-
|a little bigger than <math>-3.</math> (You can imagine values like <math>x=-2.9.</math>)
+
|a little bigger than <math style="vertical-align: 0px">-3.</math> (You can imagine values like <math style="vertical-align: 0px">x=-2.9.</math>)
 
|-
 
|-
 
|For these values, the numerator will be negative.   
 
|For these values, the numerator will be negative.   
 
|-
 
|-
|Also, for these values, <math>x-3</math> will be negative and <math>x+3</math> will be positive.  
+
|Also, for these values, <math style="vertical-align: 0px">x-3</math> will be negative and <math style="vertical-align: -1px">x+3</math> will be positive.  
 
|-
 
|-
 
|Therefore, the denominator will be negative.  
 
|Therefore, the denominator will be negative.  

Revision as of 16:35, 18 February 2017

Find the following limits:

(a) Find provided that

(b) Find

(c) Evaluate


Foundations:  
1. If we have
       
2.


Solution:

(a)

Step 1:  
Since
we have
       
Step 2:  
If we multiply both sides of the last equation by we get
       
Now, using linearity properties of limits, we have
       
Step 3:  
Solving for in the last equation,
we get

       

(b)

Step 1:  
First, we write
       
Step 2:  
Now, we have
       

(c)

Step 1:  
When we plug in into  
we get  
Thus,
       
is either equal to or
Step 2:  
To figure out which one, we factor the denominator to get
       
We are taking a right hand limit. So, we are looking at values of
a little bigger than (You can imagine values like )
For these values, the numerator will be negative.
Also, for these values, will be negative and will be positive.
Therefore, the denominator will be negative.
Since both the numerator and denominator will be negative (have the same sign),
       


Final Answer:  
    (a)    
    (b)    
    (c)    

Return to Sample Exam