Difference between revisions of "009A Sample Midterm 2, Problem 2"

From Grad Wiki
Jump to navigation Jump to search
Line 9: Line 9:
 
!Foundations:    
 
!Foundations:    
 
|-
 
|-
|What is a zero of the function <math>f(x)?</math>
+
|What is a zero of the function <math style="vertical-align: -5px">f(x)?</math>
 
|-
 
|-
|&nbsp; &nbsp; &nbsp; &nbsp; A zero is a value <math>c</math> such that <math>f(c)=0.</math>
+
|&nbsp; &nbsp; &nbsp; &nbsp; A zero is a value <math style="vertical-align: -1px">c</math> such that <math style="vertical-align: -5px">f(c)=0.</math>
 
|}
 
|}
  
Line 25: Line 25:
 
|&nbsp; &nbsp; &nbsp; &nbsp; If <math style="vertical-align: -5px">f(x)</math>&thinsp; is continuous on a closed interval <math style="vertical-align: -5px">[a,b]</math>  
 
|&nbsp; &nbsp; &nbsp; &nbsp; If <math style="vertical-align: -5px">f(x)</math>&thinsp; is continuous on a closed interval <math style="vertical-align: -5px">[a,b]</math>  
 
|-
 
|-
|&nbsp; &nbsp; &nbsp; &nbsp; and <math style="vertical-align: 0px">c</math> is any number between <math style="vertical-align: -5px">f(a)</math>&thinsp; and <math style="vertical-align: -5px">f(b)</math>,
+
|&nbsp; &nbsp; &nbsp; &nbsp; and <math style="vertical-align: 0px">c</math> is any number between <math style="vertical-align: -5px">f(a)</math>&thinsp; and <math style="vertical-align: -5px">f(b),</math>
 
|-
 
|-
 
|
 
|
Line 35: Line 35:
 
!Step 1: &nbsp;  
 
!Step 1: &nbsp;  
 
|-
 
|-
|First, <math>f(x)</math> is continuous on the interval <math>[0,1]</math> since <math>f(x)</math> is continuous everywhere.
+
|First, <math style="vertical-align: -5px">f(x)</math> is continuous on the interval <math style="vertical-align: -5px">[0,1]</math> since <math style="vertical-align: -5px">f(x)</math> is continuous everywhere.
 
|-
 
|-
 
|Also,
 
|Also,
Line 49: Line 49:
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 
|-
 
|-
|Since <math>0</math> is between <math>f(0)=2</math> and <math>f(1)=-3,</math>
+
|Since <math style="vertical-align: -1px">0</math> is between <math style="vertical-align: -5px">f(0)=2</math>&nbsp; and <math style="vertical-align: -5px">f(1)=-3,</math>
 
|-
 
|-
|the Intermediate Value Theorem tells us that there is at least one number <math>x</math>
+
|the Intermediate Value Theorem tells us that there is at least one number <math style="vertical-align: -1px">x</math>
 
|-
 
|-
|such that <math>f(x)=0.</math>
+
|such that <math style="vertical-align: -5px">f(x)=0.</math>
 
|-
 
|-
|This means that <math>f(x)</math> has a zero in the interval <math>[0,1].</math>
+
|This means that <math style="vertical-align: -5px">f(x)</math> has a zero in the interval <math style="vertical-align: -5px">[0,1].</math>
 
|}
 
|}
  

Revision as of 16:15, 18 February 2017

The function is a polynomial and therefore continuous everywhere.

(a) State the Intermediate Value Theorem.

(b) Use the Intermediate Value Theorem to show that has a zero in the interval


Foundations:  
What is a zero of the function
        A zero is a value such that


Solution:

(a)

Step 1:  
Intermediate Value Theorem
        If   is continuous on a closed interval
        and is any number between   and

        then there is at least one number in the closed interval such that

(b)

Step 1:  
First, is continuous on the interval since is continuous everywhere.
Also,

       

and

        .

Step 2:  
Since is between   and
the Intermediate Value Theorem tells us that there is at least one number
such that
This means that has a zero in the interval


Final Answer:  
    (a)     See solution above.
    (b)     See solution above.

Return to Sample Exam