Difference between revisions of "009A Sample Midterm 3, Problem 2"

From Grad Wiki
Jump to navigation Jump to search
Line 1: Line 1:
<span class="exam">The position function <math style="vertical-align: -5px">s(t)=-4.9t^2+200</math> gives the height (in meters) of an object that has fallen from a height of 200 meters.  
+
<span class="exam">The position function &nbsp;<math style="vertical-align: -5px">s(t)=-4.9t^2+200</math>&nbsp; gives the height (in meters) of an object that has fallen from a height of 200 meters.  
  
<span class="exam">The velocity at time <math style="vertical-align: -1px">t=a</math> seconds is given by:
+
<span class="exam">The velocity at time &nbsp;<math style="vertical-align: -1px">t=a</math>&nbsp; seconds is given by:
 
::<math>\lim_{t\rightarrow a} \frac{s(t)-s(a)}{t-a}</math>
 
::<math>\lim_{t\rightarrow a} \frac{s(t)-s(a)}{t-a}</math>
  
  
<span class="exam">(a) Find the velocity of the object when <math style="vertical-align: -1px">t=3</math>
+
<span class="exam">(a) Find the velocity of the object when &nbsp;<math style="vertical-align: -1px">t=3.</math>
  
 
<span class="exam">(b) At what velocity will the object impact the ground?
 
<span class="exam">(b) At what velocity will the object impact the ground?
Line 11: Line 11:
 
!Foundations: &nbsp;  
 
!Foundations: &nbsp;  
 
|-
 
|-
|'''1.''' What is the relationship between velocity <math style="vertical-align: -5px">v(t)</math> and position <math style="vertical-align: -5px">s(t)?</math>
+
|'''1.''' What is the relationship between velocity &nbsp;<math style="vertical-align: -5px">v(t)</math>&nbsp; and position &nbsp;<math style="vertical-align: -5px">s(t)?</math>
 
|-
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>v(t)=s'(t)</math>
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>v(t)=s'(t)</math>
Line 27: Line 27:
 
!Step 1: &nbsp;  
 
!Step 1: &nbsp;  
 
|-
 
|-
|Let <math style="vertical-align: -5px">v(t)</math> be the velocity of the object at time <math style="vertical-align: -1px">t.</math>
+
|Let &nbsp;<math style="vertical-align: -5px">v(t)</math>&nbsp; be the velocity of the object at time &nbsp;<math style="vertical-align: -1px">t.</math>
 
|-
 
|-
 
|Then, we have
 
|Then, we have
Line 65: Line 65:
 
|First, we need to find the time when the object hits the ground.  
 
|First, we need to find the time when the object hits the ground.  
 
|-
 
|-
|This corresponds to <math style="vertical-align: -5px">s(t)=0.</math>
+
|This corresponds to &nbsp;<math style="vertical-align: -5px">s(t)=0.</math>
 
|-
 
|-
 
|This give us the equation
 
|This give us the equation
Line 71: Line 71:
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>-4.9t^2+200=0.</math>
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>-4.9t^2+200=0.</math>
 
|-
 
|-
|When we solve for <math style="vertical-align: -5px">t,</math> we get
+
|When we solve for &nbsp;<math style="vertical-align: -5px">t,</math>&nbsp; we get
 
|-
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>t^2=\frac{200}{4.9}.</math>
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>t^2=\frac{200}{4.9}.</math>
 
|-
 
|-
|Hence, <math style="vertical-align: -18px">t=\pm \sqrt{\frac{200}{4.9}}.</math>
+
|Hence, &nbsp; <math style="vertical-align: -18px">t=\pm \sqrt{\frac{200}{4.9}}.</math>
 
|-
 
|-
|Since <math style="vertical-align: 0px">t</math> represents time, it does not make sense for <math style="vertical-align: 0px">t</math> to be negative.
+
|Since &nbsp;<math style="vertical-align: 0px">t</math>&nbsp; represents time, it does not make sense for &nbsp;<math style="vertical-align: 0px">t</math>&nbsp; to be negative.
 
|-
 
|-
|Therefore, the object hits the ground at <math style="vertical-align: -18px">t=\sqrt{\frac{200}{4.9}}.</math>
+
|Therefore, the object hits the ground at &nbsp;<math style="vertical-align: -18px">t=\sqrt{\frac{200}{4.9}}.</math>
 
|}
 
|}
  
Line 87: Line 87:
 
|Now, we need the equation for the velocity of the object.   
 
|Now, we need the equation for the velocity of the object.   
 
|-
 
|-
|We have <math style="vertical-align: -5px">v(t)=s'(t)</math> where <math style="vertical-align: -5px">v(t)</math> is the velocity function of the object.
+
|We have &nbsp;<math style="vertical-align: -5px">v(t)=s'(t)</math>&nbsp; where &nbsp;<math style="vertical-align: -5px">v(t)</math>&nbsp; is the velocity function of the object.
 
|-
 
|-
 
|Hence,  
 
|Hence,  

Revision as of 17:49, 26 February 2017

The position function  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle s(t)=-4.9t^2+200}   gives the height (in meters) of an object that has fallen from a height of 200 meters.

The velocity at time  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t=a}   seconds is given by:

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lim_{t\rightarrow a} \frac{s(t)-s(a)}{t-a}}


(a) Find the velocity of the object when  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t=3.}

(b) At what velocity will the object impact the ground?

Foundations:  
1. What is the relationship between velocity  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle v(t)}   and position  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle s(t)?}
        Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle v(t)=s'(t)}
2. What is the position of the object when it hits the ground?
        Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle s(t)=0}


Solution:

(a)

Step 1:  
Let  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle v(t)}   be the velocity of the object at time  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t.}
Then, we have
        Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{v(3)} & = & \displaystyle{\lim_{t\rightarrow 3} \frac{s(t)-s(3)}{t-3}}\\ &&\\ & = & \displaystyle{\lim_{t\rightarrow 3} \frac{-4.9t^2+200-(-4.9(9)+200)}{t-3}}\\ &&\\ & = & \displaystyle{\lim_{t\rightarrow 3} \frac{-4.9t^2+44.1}{t-3}.} \end{array}}
Step 2:  
Now, we factor the numerator to get

        Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{v(3)} & = & \displaystyle{\lim_{t\rightarrow 3} \frac{-4.9t^2+44.1}{t-3}}\\ &&\\ & = & \displaystyle{\lim_{t\rightarrow 3} \frac{-4.9(t^2-9)}{t-3}}\\ &&\\ & = & \displaystyle{\lim_{t\rightarrow 3} \frac{-4.9(t-3)(t+3)}{(t-3)}}\\ &&\\ & = & \displaystyle{\lim_{t\rightarrow 3} -4.9(t+3)}\\ &&\\ & = & \displaystyle{6(-4.9) \text{ meters/second}.} \end{array}}

(b)

Step 1:  
First, we need to find the time when the object hits the ground.
This corresponds to  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle s(t)=0.}
This give us the equation
        Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -4.9t^2+200=0.}
When we solve for  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t,}   we get
        Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t^2=\frac{200}{4.9}.}
Hence,   Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t=\pm \sqrt{\frac{200}{4.9}}.}
Since    represents time, it does not make sense for  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t}   to be negative.
Therefore, the object hits the ground at  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t=\sqrt{\frac{200}{4.9}}.}
Step 2:  
Now, we need the equation for the velocity of the object.
We have  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle v(t)=s'(t)}   where  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle v(t)}   is the velocity function of the object.
Hence,

        Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{v(t)} & = & \displaystyle{s'(t)}\\ &&\\ & = & \displaystyle{-9.8t.} \end{array}}

Therefore, the velocity of the object when it hits the ground is
        Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -9.8\sqrt{\frac{200}{4.9}}\text{ meters/second}.}


Final Answer:  
    (a)     Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 6(-4.9) \text{ meters/second}}
    (b)     Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -9.8\sqrt{\frac{200}{4.9}}\text{ meters/second}}

Return to Sample Exam