Difference between revisions of "009A Sample Midterm 1, Problem 4"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
| Line 1: | Line 1: | ||
<span class="exam">Find the derivatives of the following functions. Do not simplify. | <span class="exam">Find the derivatives of the following functions. Do not simplify. | ||
| − | <span class="exam">(a) <math>f(x)=\sqrt{x}(x^2+2)</math> | + | <span class="exam">(a) <math style="vertical-align: -5px">f(x)=\sqrt{x}(x^2+2)</math> |
| − | <span class="exam">(b) <math>g(x)=\frac{x+3}{x^{\frac{3}{2}}+2}</math> where <math>x>0</math> | + | <span class="exam">(b) <math style="vertical-align: -17px">g(x)=\frac{x+3}{x^{\frac{3}{2}}+2}</math> where <math style="vertical-align: 0px">x>0</math> |
| − | <span class="exam">(c) <math>h(x)=\frac{e^{-5x^3}}{\sqrt{x^2+1}}</math> | + | <span class="exam">(c) <math style="vertical-align: -20px">h(x)=\frac{e^{-5x^3}}{\sqrt{x^2+1}}</math> |
Revision as of 15:55, 18 February 2017
Find the derivatives of the following functions. Do not simplify.
(a)
(b) where
(c)
| Foundations: |
|---|
| 1. Product Rule |
| 2. Quotient Rule |
| Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{d}{dx}\bigg(\frac{f(x)}{g(x)}\bigg)=\frac{g(x)f'(x)-f(x)g'(x)}{(g(x))^2}} |
| 3. Chain Rule |
| Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{d}{dx}(f(g(x)))=f'(g(x))g'(x)} |
Solution:
(a)
| Step 1: |
|---|
| Using the Product Rule, we have |
| Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f'(x)=(\sqrt{x})'(x^2+2)+\sqrt{x}(x^2+2)'.} |
| Step 2: |
|---|
| Now, we have |
| Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{f'(x)} & = & \displaystyle{(\sqrt{x})'(x^2+2)+\sqrt{x}(x^2+2)'}\\ &&\\ & = & \displaystyle{\bigg(\frac{1}{2}x^{-\frac{1}{2}}\bigg)(x^2+2)+\sqrt{x}(2x).} \end{array}} |
(b)
| Step 1: |
|---|
| Using the Quotient Rule, we have |
| Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle g'(x)=\frac{(x^{\frac{3}{2}}+2)(x+3)'-(x+3)(x^{\frac{3}{2}}+2)'}{(x^{\frac{3}{2}}+2)^2}.} |
| Step 2: |
|---|
| Now, we have |
| Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{g'(x)} & = & \displaystyle{\frac{(x^{\frac{3}{2}}+2)(x+3)'-(x+3)(x^{\frac{3}{2}}+2)'}{(x^{\frac{3}{2}}+2)^2}}\\ &&\\ & = & \displaystyle{\frac{(x^{\frac{3}{2}}+2)(1)-(x+3)(\frac{3}{2}x^{\frac{1}{2}})}{(x^{\frac{3}{2}}+2)^2}.} \end{array}} |
(c)
| Step 1: |
|---|
| Using the Quotient Rule, we have |
| Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle h'(x)=\frac{\sqrt{x^2+1}(e^{-5x^3})'-e^{-5x^3}(\sqrt{x^2+1})'}{(\sqrt{x^2+1})^2}.} |
| Step 2: |
|---|
| Now, using the Chain Rule, we have |
| Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{h'(x)} & = & \displaystyle{\frac{\sqrt{x^2+1}(e^{-5x^3})'-e^{-5x^3}(\sqrt{x^2+1})'}{(\sqrt{x^2+1})^2}}\\ &&\\ & = & \displaystyle{\frac{\sqrt{x^2+1}(e^{-5x^3})(-5x^3)'-e^{-5x^3}\frac{1}{2}(x^2+1)^{\frac{-1}{2}}(x^2+1)'}{(\sqrt{x^2+1})^2}}\\ &&\\ & = & \displaystyle{\frac{\sqrt{x^2+1}(e^{-5x^3})(-15x^2)-e^{-5x^3}\frac{1}{2}(x^2+1)^{\frac{-1}{2}}(2x)}{(\sqrt{x^2+1})^2}.} \end{array}} |
| Final Answer: |
|---|
| (a) Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \bigg(\frac{1}{2}x^{-\frac{1}{2}}\bigg)(x^2+2)+\sqrt{x}(2x)} |
| (b) Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{(x^{\frac{3}{2}}+2)(1)-(x+3)(\frac{3}{2}x^{\frac{1}{2}})}{(x^{\frac{3}{2}}+2)^2}} |
| (c) Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{\sqrt{x^2+1}(e^{-5x^3})(-15x^2)-e^{-5x^3}\frac{1}{2}(x^2+1)^{\frac{-1}{2}}(2x)}{(\sqrt{x^2+1})^2}} |