Difference between revisions of "009C Sample Final 3, Problem 6"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
Line 1: | Line 1: | ||
<span class="exam"> Consider the power series | <span class="exam"> Consider the power series | ||
− | + | ::<math>\sum_{n=0}^\infty (-1)^n \frac{x^{n+1}}{n+1}</math> | |
− | + | <span class="exam">(a) Find the radius of convergence of the above power series. | |
− | + | <span class="exam">(b) Find the interval of convergence of the above power series. | |
− | + | <span class="exam">(c) Find the closed formula for the function <math>f(x)</math> to which the power series converges. | |
− | + | <span class="exam">(d) Does the series | |
− | + | ::<math>\sum_{n=0}^\infty \frac{1}{(n+1)3^{n+1}}</math> | |
− | + | <span class="exam">converge? If so, find its sum. | |
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
Line 28: | Line 28: | ||
| | | | ||
|} | |} | ||
+ | |||
'''Solution:''' | '''Solution:''' | ||
Line 70: | Line 71: | ||
| | | | ||
|} | |} | ||
+ | |||
+ | '''(c)''' | ||
+ | |||
+ | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
+ | !Step 1: | ||
+ | |- | ||
+ | | | ||
+ | |- | ||
+ | | | ||
+ | |- | ||
+ | | | ||
+ | |} | ||
+ | |||
+ | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
+ | !Step 2: | ||
+ | |- | ||
+ | | | ||
+ | |- | ||
+ | | | ||
+ | |} | ||
+ | |||
+ | '''(d)''' | ||
+ | |||
+ | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
+ | !Step 1: | ||
+ | |- | ||
+ | | | ||
+ | |- | ||
+ | | | ||
+ | |- | ||
+ | | | ||
+ | |} | ||
+ | |||
+ | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
+ | !Step 2: | ||
+ | |- | ||
+ | | | ||
+ | |- | ||
+ | | | ||
+ | |} | ||
+ | |||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
Line 76: | Line 118: | ||
| '''(a)''' | | '''(a)''' | ||
|- | |- | ||
− | | '''(b)''' | + | | '''(b)''' |
+ | |- | ||
+ | | '''(c)''' | ||
+ | |- | ||
+ | | '''(d)''' | ||
|} | |} | ||
[[009C_Sample_Final_3|'''<u>Return to Sample Exam</u>''']] | [[009C_Sample_Final_3|'''<u>Return to Sample Exam</u>''']] |
Revision as of 17:58, 4 March 2017
Consider the power series
(a) Find the radius of convergence of the above power series.
(b) Find the interval of convergence of the above power series.
(c) Find the closed formula for the function to which the power series converges.
(d) Does the series
converge? If so, find its sum.
Foundations: |
---|
Solution:
(a)
Step 1: |
---|
Step 2: |
---|
(b)
Step 1: |
---|
Step 2: |
---|
(c)
Step 1: |
---|
Step 2: |
---|
(d)
Step 1: |
---|
Step 2: |
---|
Final Answer: |
---|
(a) |
(b) |
(c) |
(d) |