Difference between revisions of "009C Sample Final 3, Problem 7"

From Grad Wiki
Jump to navigation Jump to search
(Created page with "<span class="exam">Compute ::<span class="exam">a) <math style="vertical-align: -12px">\lim_{n\rightarrow \infty} \frac{3-2n^2}{5n^2+n+1}</math> ::<span class="exam">b) <mat...")
 
Line 1: Line 1:
<span class="exam">Compute
+
<span class="exam">A curve is given in polar coordinates by
  
::<span class="exam">a) <math style="vertical-align: -12px">\lim_{n\rightarrow \infty} \frac{3-2n^2}{5n^2+n+1}</math>
+
::::::<math>r=1+\cos^2(2\theta)</math>
  
::<span class="exam">b) <math style="vertical-align: -12px">\lim_{n\rightarrow \infty} \frac{\ln n}{\ln 3n}</math>
+
::<span class="exam">a) Show that the point with Cartesian coordinates <math>(x,y)=\bigg(\frac{\sqrt{2}}{2},\frac{\sqrt{2}}{2}\bigg)</math> belongs to the curve.
 +
 
 +
::<span class="exam">b) Sketch the curve.
 +
 
 +
::<span class="exam">c) In Cartesian coordinates, find the equation of the tangent line at <math>\bigg(\frac{\sqrt{2}}{2},\frac{\sqrt{2}}{2}\bigg).</math>
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"

Revision as of 12:01, 18 February 2017

A curve is given in polar coordinates by

a) Show that the point with Cartesian coordinates belongs to the curve.
b) Sketch the curve.
c) In Cartesian coordinates, find the equation of the tangent line at
Foundations:  

Solution:

(a)

Step 1:  
Step 2:  

(b)

Step 1:  
Step 2:  
Final Answer:  
   (a)
   (b)

Return to Sample Exam