Difference between revisions of "009A Sample Midterm 2, Problem 5"

From Grad Wiki
Jump to navigation Jump to search
Line 47: Line 47:
 
!Step 1:    
 
!Step 1:    
 
|-
 
|-
|
+
|First, we use the Chain Rule to get
|-
 
|
 
|-
 
|
 
 
|-
 
|-
|
+
|&nbsp; &nbsp; &nbsp; &nbsp; <math>g'(x)=\cos(\cos(e^x))(\cos(e^x))'.</math>
 
|}
 
|}
  
Line 59: Line 55:
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 
|-
 
|-
|  
+
|Now, we use the Chain Rule again to get
|-
 
|
 
|-
 
|
 
 
|-
 
|-
 
|
 
|
 +
&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 +
\displaystyle{g'(x)} & = & \displaystyle{\cos(\cos(e^x))(\cos(e^x))'}\\
 +
&&\\
 +
& = & \displaystyle{\cos(\cos(e^x))(-\sin(e^x))(e^x)'}\\
 +
&&\\
 +
& = & \displaystyle{\cos(\cos(e^x))(-\sin(e^x))(e^x).}
 +
\end{array}</math>
 
|}
 
|}
  
Line 99: Line 98:
 
|&nbsp; &nbsp; '''(a)''' &nbsp; &nbsp; <math>3\tan^2(7x^2+5)\sec^2(7x^2+5)(14x)</math>  
 
|&nbsp; &nbsp; '''(a)''' &nbsp; &nbsp; <math>3\tan^2(7x^2+5)\sec^2(7x^2+5)(14x)</math>  
 
|-
 
|-
|'''(b)'''
+
|&nbsp; &nbsp; '''(b)''' &nbsp; &nbsp; <math>\cos(\cos(e^x))(-\sin(e^x))(e^x)</math>
 
|-
 
|-
 
|'''(c)'''  
 
|'''(c)'''  
 
|}
 
|}
 
[[009A_Sample_Midterm_2|'''<u>Return to Sample Exam</u>''']]
 
[[009A_Sample_Midterm_2|'''<u>Return to Sample Exam</u>''']]

Revision as of 13:39, 17 February 2017

Find the derivatives of the following functions. Do not simplify.

a)
b)
c)


Foundations:  
1. Chain Rule
2. Derivatives of trig/ln
3. Quotient Rule


Solution:

(a)

Step 1:  
First, we use the Chain Rule to get
       
Step 2:  
Now, we use the Chain Rule again to get

       

(b)

Step 1:  
First, we use the Chain Rule to get
       
Step 2:  
Now, we use the Chain Rule again to get

       

(c)

Step 1:  
Step 2:  


Final Answer:  
    (a)    
    (b)    
(c)

Return to Sample Exam