Difference between revisions of "009A Sample Midterm 1, Problem 3"

From Grad Wiki
Jump to navigation Jump to search
Line 18: Line 18:
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1:    
 
!Step 1:    
 +
|-
 +
|Let <math>f(x)=\sqrt{3x-5}.</math>
 
|-
 
|-
 
|Using the limit definition of the derivative, we have
 
|Using the limit definition of the derivative, we have
Line 57: Line 59:
 
!Step 1: &nbsp;  
 
!Step 1: &nbsp;  
 
|-
 
|-
|
+
|We start by finding the slope of the tangent line to <math>f(x)=\sqrt{3x-5}</math> at <math>(2,1).</math>
 
|-
 
|-
|
+
|Using the derivative calculated in part (a), the slope is
 
|-
 
|-
|
+
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
|-
+
\displaystyle{m} & = & \displaystyle{f'(2)}\\
|
+
&&\\
 +
& = & \displaystyle{\frac{3}{2\sqrt{3(2)-5}}}\\
 +
&&\\
 +
& = & \displaystyle{\frac{3}{2}.}
 +
\end{array}</math>
 
|}
 
|}
  
Line 69: Line 75:
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 
|-
 
|-
|  
+
|Now, the tangent line to <math>f(x)=\sqrt{3x-5}</math> at <math>(2,1)</math>
 
|-
 
|-
|
+
|has slope <math>m=\frac{3}{2}</math> and passes through the point <math>(2,1).</math>
 
|-
 
|-
|
+
|Hence, the equation of this line is
 
|-
 
|-
|
+
|&nbsp; &nbsp; &nbsp; &nbsp; <math>y=\frac{3}{2}(x-2)+1.</math>
 
|}
 
|}
  
Line 81: Line 87:
 
!Final Answer: &nbsp;  
 
!Final Answer: &nbsp;  
 
|-
 
|-
|&nbsp; &nbsp; '''(a)''' &nbsp; &nbsp; <math>f'(x)=\frac{3}{2\sqrt{3x-5}}</math>  
+
|&nbsp; &nbsp; '''(a)''' &nbsp; &nbsp; <math>\frac{3}{2\sqrt{3x-5}}</math>  
 
|-
 
|-
|'''(b)'''  
+
|&nbsp; &nbsp; '''(b)''' &nbsp; &nbsp; <math>y=\frac{3}{2}(x-2)+1</math>
 
|}
 
|}
 
[[009A_Sample_Midterm_1|'''<u>Return to Sample Exam</u>''']]
 
[[009A_Sample_Midterm_1|'''<u>Return to Sample Exam</u>''']]

Revision as of 13:29, 16 February 2017

Let

a) Use the definition of the derivative to compute for
b) Find the equation of the tangent line to at


Foundations:  
1. Limit Definition of Derivative
2. Tangent line equation

Solution:

(a)

Step 1:  
Let
Using the limit definition of the derivative, we have

       

Step 2:  
Now, we multiply the numerator and denominator by the conjugate of the numerator.
Hence, we have
       

(b)

Step 1:  
We start by finding the slope of the tangent line to at
Using the derivative calculated in part (a), the slope is
       
Step 2:  
Now, the tangent line to at
has slope and passes through the point
Hence, the equation of this line is
       
Final Answer:  
    (a)    
    (b)    

Return to Sample Exam