Difference between revisions of "009A Sample Midterm 1, Problem 2"

From Grad Wiki
Jump to navigation Jump to search
Line 61: Line 61:
 
!Step 1:    
 
!Step 1:    
 
|-
 
|-
|
+
|Notice that we are calculating a right hand limit.
 
|-
 
|-
|
+
|Thus, we are looking at values of <math>x</math> that are bigger than <math>1.</math>
 
|-
 
|-
|
+
|Using the definition of <math>f(x)</math>, we have
 
|-
 
|-
|
+
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\lim_{x\rightarrow 1^+} f(x)=\lim_{x\rightarrow 1^+} \sqrt{x}.</math>
 
|}
 
|}
  
Line 73: Line 73:
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 
|-
 
|-
|  
+
|Now, we have
|-
 
|
 
|-
 
|
 
 
|-
 
|-
 
|
 
|
 +
&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 +
\displaystyle{\lim_{x\rightarrow 1^+} f(x)} & = & \displaystyle{\lim_{x\rightarrow 1^+} \sqrt{x}}\\
 +
&&\\
 +
& = & \displaystyle{\lim_{x\rightarrow 1} \sqrt{x}}\\
 +
&&\\
 +
& = & \displaystyle{\sqrt{1}}\\
 +
&&\\
 +
& = & \displaystyle{1.}\\
 +
\end{array}</math>
 
|}
 
|}
  
Line 137: Line 142:
 
|&nbsp; &nbsp; '''(a)''' &nbsp; &nbsp; <math>1</math>  
 
|&nbsp; &nbsp; '''(a)''' &nbsp; &nbsp; <math>1</math>  
 
|-
 
|-
|'''(b)'''
+
|&nbsp; &nbsp; '''(b)''' &nbsp; &nbsp; <math>1</math>
 
|-
 
|-
 
|'''(c)'''
 
|'''(c)'''

Revision as of 09:49, 16 February 2017

Consider the following function

a) Find
b) Find
c) Find
d) Is continuous at Briefly explain.


Foundations:  
1. Left hand/right hand limits
2. Definition of limit in terms of right and left
3. Definition of continuous

Solution:

(a)

Step 1:  
Notice that we are calculating a left hand limit.
Thus, we are looking at values of that are smaller than
Using the definition of , we have
       
Step 2:  
Now, we have

       

(b)

Step 1:  
Notice that we are calculating a right hand limit.
Thus, we are looking at values of that are bigger than
Using the definition of , we have
       
Step 2:  
Now, we have

       

(c)

Step 1:  
Step 2:  

(d)

Step 1:  
Step 2:  
Final Answer:  
    (a)    
    (b)    
(c)
(d)

Return to Sample Exam