Difference between revisions of "009A Sample Midterm 1, Problem 2"

From Grad Wiki
Jump to navigation Jump to search
Line 31: Line 31:
 
!Step 1:    
 
!Step 1:    
 
|-
 
|-
|
+
|Notice that we are calculating a left hand limit.
 +
|-
 +
|Thus, we are looking at values of <math>x</math> that are smaller than <math>1.</math>
 +
|-
 +
|Using the definition of <math>f(x)</math>, we have
 
|-
 
|-
|
+
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\lim_{x\rightarrow 1^-} f(x)=\lim_{x\rightarrow 1^-} x^2.</math>
 
|}
 
|}
  
Line 39: Line 43:
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 
|-
 
|-
|
+
|Now, we have
 
|-
 
|-
 
|
 
|
 +
&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 +
\displaystyle{\lim_{x\rightarrow 1^-} f(x)} & = & \displaystyle{\lim_{x\rightarrow 1^-} x^2}\\
 +
&&\\
 +
& = & \displaystyle{\lim_{x\rightarrow 1} x^2}\\
 +
&&\\
 +
& = & \displaystyle{1^2}\\
 +
&&\\
 +
& = & \displaystyle{1.}\\
 +
\end{array}</math>
 
|}
 
|}
  
Line 122: Line 135:
 
!Final Answer: &nbsp;  
 
!Final Answer: &nbsp;  
 
|-
 
|-
|'''(a)'''  
+
|&nbsp; &nbsp; '''(a)''' &nbsp; &nbsp; <math>1</math>
 
|-
 
|-
 
|'''(b)'''
 
|'''(b)'''

Revision as of 09:46, 16 February 2017

Consider the following function

a) Find
b) Find
c) Find
d) Is continuous at Briefly explain.


Foundations:  
1. Left hand/right hand limits
2. Definition of limit in terms of right and left
3. Definition of continuous

Solution:

(a)

Step 1:  
Notice that we are calculating a left hand limit.
Thus, we are looking at values of that are smaller than
Using the definition of , we have
       
Step 2:  
Now, we have

       

(b)

Step 1:  
Step 2:  

(c)

Step 1:  
Step 2:  

(d)

Step 1:  
Step 2:  
Final Answer:  
    (a)    
(b)
(c)
(d)

Return to Sample Exam