Difference between revisions of "009A Sample Midterm 1, Problem 1"

From Grad Wiki
Jump to navigation Jump to search
Line 66: Line 66:
 
!Step 1:    
 
!Step 1:    
 
|-
 
|-
|
+
|First, we write
 
|-
 
|-
|
+
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\lim_{x\rightarrow 0} \frac{\sin(4x)}{5x}=\lim_{x\rightarrow 0} \frac{4}{5} \bigg(\frac{\sin(4x)}{4x}\bigg).</math>
|-
 
|
 
|-
 
|
 
 
|}
 
|}
  
Line 78: Line 74:
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 
|-
 
|-
|  
+
|Now, we have
|-
 
|
 
|-
 
|
 
 
|-
 
|-
|
+
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 +
\displaystyle{\lim_{x\rightarrow 0} \frac{\sin(4x)}{5x}} & = & \displaystyle{\frac{4}{5}\lim_{x\rightarrow 0} \frac{\sin(4x)}{4x}}\\
 +
&&\\
 +
& = & \displaystyle{\frac{4}{5}(1)}\\
 +
&&\\
 +
& = & \displaystyle{\frac{4}{5}.}
 +
\end{array}</math>
 
|}
 
|}
  

Revision as of 09:19, 16 February 2017

Find the following limits:

a) Find provided that
b) Find
c) Evaluate


Foundations:  
1. Linearity rules of limits
2. Limit sin(x)/x
3. Left and right hand limits

Solution:

(a)

Step 1:  
Since
we have
       
Step 2:  
If we multiply both sides of the last equation by we get
       
Now, using linearity properties of limits, we have
       
Step 3:  
Solving for in the last equation,
we get

       

(b)

Step 1:  
First, we write
       
Step 2:  
Now, we have
       

(c)

Step 1:  
Step 2:  


Final Answer:  
    (a)    
(b)
(c)

Return to Sample Exam