Difference between revisions of "009C Sample Midterm 1, Problem 2"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
| Line 1: | Line 1: | ||
<span class="exam">Consider the infinite series <math>\sum_{n=2}^\infty 2\bigg(\frac{1}{2^n}-\frac{1}{2^{n+1}}\bigg).</math> | <span class="exam">Consider the infinite series <math>\sum_{n=2}^\infty 2\bigg(\frac{1}{2^n}-\frac{1}{2^{n+1}}\bigg).</math> | ||
| − | + | <span class="exam">(a) Find an expression for the <math style="vertical-align: 0px">n</math>th partial sum <math style="vertical-align: -3px">s_n</math> of the series. | |
| − | + | ||
| + | <span class="exam">(b) Compute <math style="vertical-align: -11px">\lim_{n\rightarrow \infty} s_n.</math> | ||
Revision as of 17:16, 18 February 2017
Consider the infinite series
(a) Find an expression for the th partial sum of the series.
(b) Compute
| Foundations: |
|---|
| The th partial sum, for a series is defined as |
|
|
Solution:
(a)
| Step 1: |
|---|
| We need to find a pattern for the partial sums in order to find a formula. |
| We start by calculating . We have |
| Step 2: |
|---|
| Next, we calculate and We have |
| and |
| Step 3: |
|---|
| If we look at and we notice a pattern. |
| From this pattern, we get the formula |
(b)
| Step 1: |
|---|
| From Part (a), we have |
| Step 2: |
|---|
| We now calculate |
| We get |
| Final Answer: |
|---|
| (a) |
| (b) |