Difference between revisions of "009C Sample Midterm 2, Problem 3"

From Grad Wiki
Jump to navigation Jump to search
Line 49: Line 49:
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1:    
 
!Step 1:    
 +
|-
 +
|We begin by using the Ratio Test.
 +
|-
 +
|We have
 
|-
 
|-
 
|
 
|
 +
&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 +
\displaystyle{\lim_{n\rightarrow \infty}\bigg|\frac{a_{n+1}}{a_n}\bigg|} & = & \displaystyle{\lim_{n\rightarrow \infty} \bigg| \frac{(-2)^{n+1} (n+1)!}{(n+1)^{n+1}} \frac{n^n}{(-2)^n n!}\bigg|}\\
 +
&&\\
 +
& = & \displaystyle{\lim_{n\rightarrow \infty} \bigg| (-2)(n+1) \frac{n^n}{(n+1)^{n+1}}\bigg|}\\
 +
&&\\
 +
& = & \displaystyle{\lim_{n\rightarrow \infty} 2\frac{n^n}{(n+1)^n}}\\
 +
&&\\
 +
& = & \displaystyle{2\lim_{n\rightarrow \infty} \bigg(\frac{n}{n+1}\bigg)^n.}
 +
\end{array}</math>
 +
|}
 +
 +
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 +
!Step 2: &nbsp;
 +
|-
 +
|Now, we need to calculate <math>\lim_{n\rightarrow \infty} \bigg(\frac{n}{n+1}\bigg)^n.</math>
 +
|-
 +
|Let <math>y=\lim_{n\rightarrow \infty} \bigg(\frac{n}{n+1}\bigg)^n.</math>
 +
|-
 +
|Then, taking the natural log of both sides, we get
 
|-
 
|-
 
|
 
|
 +
&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 +
\displaystyle{\ln y } & = & \displaystyle{\ln \bigg( \lim_{n\rightarrow \infty} \bigg(\frac{n}{n+1}\bigg)^n \bigg)}\\
 +
&&\\
 +
& = & \displaystyle{\lim_{n\rightarrow \infty} \ln \bigg(\frac{n}{n+1}\bigg)^n}\\
 +
&&\\
 +
& = & \displaystyle{\lim_{n\rightarrow \infty} n \ln \bigg(\frac{n}{n+1}\bigg) }\\
 +
&&\\
 +
& = & \displaystyle{\lim_{n\rightarrow \infty} \frac{\ln \bigg(\frac{n}{n+1}\bigg)}{\frac{1}{n}}}
 +
\end{array}</math>
 
|-
 
|-
|
+
|since we can interchange limits and continuous functions.
 +
|-
 +
|Now, this limit has the form <math>\frac{0}{0}.</math>
 +
|-
 +
|Hence, we can use L'Hopital's Rule to calculate this limit.
 +
|}
 +
 
 +
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 +
!Step 3: &nbsp;
 +
|-
 +
|Now, we have
 
|-
 
|-
 
|
 
|
 +
&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 +
\displaystyle{\ln y } & = & \displaystyle{\lim_{n\rightarrow \infty} \frac{\ln \bigg(\frac{n}{n+1}\bigg)}{\frac{1}{n}}}\\
 +
&&\\
 +
& = & \displaystyle{\lim_{x\rightarrow \infty} \frac{\ln \bigg(\frac{x}{x+1}\bigg)}{\frac{1}{x}}}\\
 +
&&\\
 +
& \overset{L'H}{=} & \displaystyle{\lim_{x\rightarrow \infty} \frac{\frac{1}{\bigg(\frac{x}{x+1}\bigg)}\frac{1}{(x+1)^2}}{\big(-\frac{1}{x^2}\big)}}\\
 +
&&\\
 +
& = & \displaystyle{\lim_{x\rightarrow \infty} \frac{-x}{x+1}}\\
 +
&&\\
 +
& = & \displaystyle{-1.}
 +
\end{array}</math>
 
|}
 
|}
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
!Step 2: &nbsp;
+
!Step 4: &nbsp;
 +
|-
 +
|Since <math>\ln y=-1,</math> <math>y=e^{-1}.</math>
 
|-
 
|-
|  
+
|Now, we have
 
|-
 
|-
|
+
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\lim_{n\rightarrow \infty} \bigg|\frac{a_{n+1}}{a_n}\bigg|=2e^{-1}=\frac{2}{e}.</math>
 
|-
 
|-
|
+
|Since <math>\frac{2}{e}<1,</math> the series is absolutely convergent by the Ratio Test.
 
|-
 
|-
|
+
|Therefore, the series converges.
 
|}
 
|}
  

Revision as of 11:29, 13 February 2017

Determine convergence or divergence:

a)
b)


Foundations:  
Alternating Series Test
Ratio Test

Solution:

(a)

Step 1:  
First, we have
        Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{n=1}^\infty (-1)^n \sqrt{\frac{1}{n}}=\sum_{n=1}^\infty (-1)^n \frac{1}{\sqrt{n}}.}
Step 2:  
We notice that the series is alternating.
Let Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle b_n=\frac{1}{\sqrt{n}}.}
The sequence Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \{b_n\}} is decreasing since
        Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{\sqrt{n+1}}<\frac{1}{\sqrt{n}}}
for all Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n\ge 1.}
Also,
        Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lim_{n\rightarrow \infty}b_n=\lim_{n\rightarrow \infty}\frac{1}{\sqrt{n}}=0.}
Therefore, the series Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{n=1}^\infty \frac{(-1)^n}{\sqrt{n}}} converges by the Alternating Series Test.

(b)

Step 1:  
We begin by using the Ratio Test.
We have

        Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{\lim_{n\rightarrow \infty}\bigg|\frac{a_{n+1}}{a_n}\bigg|} & = & \displaystyle{\lim_{n\rightarrow \infty} \bigg| \frac{(-2)^{n+1} (n+1)!}{(n+1)^{n+1}} \frac{n^n}{(-2)^n n!}\bigg|}\\ &&\\ & = & \displaystyle{\lim_{n\rightarrow \infty} \bigg| (-2)(n+1) \frac{n^n}{(n+1)^{n+1}}\bigg|}\\ &&\\ & = & \displaystyle{\lim_{n\rightarrow \infty} 2\frac{n^n}{(n+1)^n}}\\ &&\\ & = & \displaystyle{2\lim_{n\rightarrow \infty} \bigg(\frac{n}{n+1}\bigg)^n.} \end{array}}

Step 2:  
Now, we need to calculate Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lim_{n\rightarrow \infty} \bigg(\frac{n}{n+1}\bigg)^n.}
Let Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y=\lim_{n\rightarrow \infty} \bigg(\frac{n}{n+1}\bigg)^n.}
Then, taking the natural log of both sides, we get

        Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{\ln y } & = & \displaystyle{\ln \bigg( \lim_{n\rightarrow \infty} \bigg(\frac{n}{n+1}\bigg)^n \bigg)}\\ &&\\ & = & \displaystyle{\lim_{n\rightarrow \infty} \ln \bigg(\frac{n}{n+1}\bigg)^n}\\ &&\\ & = & \displaystyle{\lim_{n\rightarrow \infty} n \ln \bigg(\frac{n}{n+1}\bigg) }\\ &&\\ & = & \displaystyle{\lim_{n\rightarrow \infty} \frac{\ln \bigg(\frac{n}{n+1}\bigg)}{\frac{1}{n}}} \end{array}}

since we can interchange limits and continuous functions.
Now, this limit has the form Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{0}{0}.}
Hence, we can use L'Hopital's Rule to calculate this limit.
Step 3:  
Now, we have

        Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{\ln y } & = & \displaystyle{\lim_{n\rightarrow \infty} \frac{\ln \bigg(\frac{n}{n+1}\bigg)}{\frac{1}{n}}}\\ &&\\ & = & \displaystyle{\lim_{x\rightarrow \infty} \frac{\ln \bigg(\frac{x}{x+1}\bigg)}{\frac{1}{x}}}\\ &&\\ & \overset{L'H}{=} & \displaystyle{\lim_{x\rightarrow \infty} \frac{\frac{1}{\bigg(\frac{x}{x+1}\bigg)}\frac{1}{(x+1)^2}}{\big(-\frac{1}{x^2}\big)}}\\ &&\\ & = & \displaystyle{\lim_{x\rightarrow \infty} \frac{-x}{x+1}}\\ &&\\ & = & \displaystyle{-1.} \end{array}}

Step 4:  
Since Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ln y=-1,} Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y=e^{-1}.}
Now, we have
        Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lim_{n\rightarrow \infty} \bigg|\frac{a_{n+1}}{a_n}\bigg|=2e^{-1}=\frac{2}{e}.}
Since Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{2}{e}<1,} the series is absolutely convergent by the Ratio Test.
Therefore, the series converges.
Final Answer:  
    (a)     converges
    (b)     converges

Return to Sample Exam