Difference between revisions of "009C Sample Midterm 2, Problem 3"

From Grad Wiki
Jump to navigation Jump to search
Line 43: Line 43:
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\lim_{n\rightarrow \infty}b_n=\lim_{n\rightarrow \infty}\frac{1}{\sqrt{n}}=0.</math>  
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\lim_{n\rightarrow \infty}b_n=\lim_{n\rightarrow \infty}\frac{1}{\sqrt{n}}=0.</math>  
 
|-
 
|-
|Therefore, the series <math>\sum_{n=1}^\infty \frac{(-1)^n}{\sqrt{n|}</math> converges by the Alternating Series Test.
+
|Therefore, the series <math>\sum_{n=1}^\infty \frac{(-1)^n}{\sqrt{n}}</math> converges by the Alternating Series Test.
 
|}
 
|}
  

Revision as of 12:05, 13 February 2017

Determine convergence or divergence:

a)
b)


Foundations:  
Alternating Series Test
Ratio Test

Solution:

(a)

Step 1:  
First, we have
       
Step 2:  
We notice that the series is alternating.
Let
The sequence is decreasing since
       
for all
Also,
       
Therefore, the series converges by the Alternating Series Test.

(b)

Step 1:  
Step 2:  
Final Answer:  
    (a)     converges
(b)

Return to Sample Exam