Difference between revisions of "009C Sample Midterm 2, Problem 4"
		
		
		
		
		
		Jump to navigation
		Jump to search
		
				
		
		
	
| Kayla Murray (talk | contribs) | Kayla Murray (talk | contribs)  | ||
| Line 8: | Line 8: | ||
| !Foundations:     | !Foundations:     | ||
| |- | |- | ||
| − | | Root Test | + | |'''1.''' '''Root Test''' | 
| |- | |- | ||
| − | | Ratio Test | + | |        Let <math>\{a_n\}</math> be a positive sequence and let <math style="vertical-align: -12px">\lim_{n\rightarrow \infty} (a_n)^{\frac{1}{n}}=L.</math> | 
| + | |- | ||
| + | |        Then, | ||
| + | |- | ||
| + | |        If <math style="vertical-align: -4px">L<1,</math> the series converges.  | ||
| + | |- | ||
| + | | | ||
| + |         If <math style="vertical-align: -4px">L>1,</math> the series is divergent. | ||
| + | |- | ||
| + | | | ||
| + |         If <math style="vertical-align: -4px">L=1,</math> the test is inconclusive.  | ||
| + | |- | ||
| + | |'''2.''' '''Ratio Test'''  | ||
| + | |- | ||
| + | |        Let <math style="vertical-align: -7px">\sum a_n</math> be a series and <math>L=\lim_{n\rightarrow \infty}\bigg|\frac{a_{n+1}}{a_n}\bigg|.</math>  | ||
| + | |- | ||
| + | |        Then, | ||
| + | |- | ||
| + | | | ||
| + |         If <math style="vertical-align: -4px">L<1,</math> the series is absolutely convergent.  | ||
| + | |- | ||
| + | | | ||
| + |         If <math style="vertical-align: -4px">L>1,</math> the series is divergent. | ||
| |- | |- | ||
| | | | | ||
| + |         If <math style="vertical-align: -4px">L=1,</math> the test is inconclusive. | ||
| |} | |} | ||
| Line 28: | Line 51: | ||
| | | | | ||
|         <math>\begin{array}{rcl} |         <math>\begin{array}{rcl} | ||
| − | \displaystyle{\lim_{n\rightarrow \infty} \sqrt{|a_n|}} & = & \displaystyle{\lim_{n\rightarrow \infty} \sqrt{|n^nx^n|}}\\ | + | \displaystyle{\lim_{n\rightarrow \infty} \sqrt[n]{|a_n|}} & = & \displaystyle{\lim_{n\rightarrow \infty} \sqrt[n]{|n^nx^n|}}\\ | 
| &&\\ | &&\\ | ||
| & = & \displaystyle{\lim_{n\rightarrow \infty} |n^nx^n|^{\frac{1}{n}}}\\ | & = & \displaystyle{\lim_{n\rightarrow \infty} |n^nx^n|^{\frac{1}{n}}}\\ | ||
| Line 38: | Line 61: | ||
| & = & \displaystyle{|x|\lim_{n\rightarrow \infty} n}\\ | & = & \displaystyle{|x|\lim_{n\rightarrow \infty} n}\\ | ||
| &&\\ | &&\\ | ||
| − | & = & \displaystyle{\infty} | + | & = & \displaystyle{\infty.} | 
| \end{array}</math> | \end{array}</math> | ||
| |} | |} | ||
| Line 45: | Line 68: | ||
| !Step 2:   | !Step 2:   | ||
| |- | |- | ||
| − | |This means that as long as <math>x\ne 0,</math> this series diverges. | + | |This means that as long as <math style="vertical-align: -6px">x\ne 0,</math> this series diverges. | 
| |- | |- | ||
| − | |Hence, the radius of convergence is <math>R=0</math> and   | + | |Hence, the radius of convergence is <math style="vertical-align: -1px">R=0</math> and   | 
| |- | |- | ||
| − | |the interval of convergence is <math>\{0\}.</math> | + | |the interval of convergence is <math style="vertical-align: -5px">\{0\}.</math> | 
| |- | |- | ||
| | | | | ||
| Line 63: | Line 86: | ||
| |- | |- | ||
| |        <math>\begin{array}{rcl} | |        <math>\begin{array}{rcl} | ||
| − | \displaystyle{\lim_{n\rightarrow \infty}|\frac{a_{n+1}}{a_n}|} & = & \displaystyle{\lim_{n\rightarrow \infty} \bigg|\frac{(x+1)^{n+1}}{\sqrt{n+1}}\frac{\sqrt{n}}{(x+1)^n}\bigg|}\\ | + | \displaystyle{\lim_{n\rightarrow \infty}\bigg|\frac{a_{n+1}}{a_n}\bigg|} & = & \displaystyle{\lim_{n\rightarrow \infty} \bigg|\frac{(x+1)^{n+1}}{\sqrt{n+1}}\frac{\sqrt{n}}{(x+1)^n}\bigg|}\\ | 
| &&\\ | &&\\ | ||
| & = & \displaystyle{\lim_{n\rightarrow \infty} \bigg| (x+1)\frac{\sqrt{n}}{\sqrt{n+1}}\bigg|}\\ | & = & \displaystyle{\lim_{n\rightarrow \infty} \bigg| (x+1)\frac{\sqrt{n}}{\sqrt{n+1}}\bigg|}\\ | ||
| Line 82: | Line 105: | ||
| !Step 2:   | !Step 2:   | ||
| |- | |- | ||
| − | |The Ratio Test tells us this series is absolutely convergent if <math>|x+1|<1.</math> | + | |The Ratio Test tells us this series is absolutely convergent if <math style="vertical-align: -4px">|x+1|<1.</math> | 
| |- | |- | ||
| − | |Hence, the Radius of Convergence of this series is <math>R=1.</math> | + | |Hence, the Radius of Convergence of this series is <math style="vertical-align: -1px">R=1.</math> | 
| |} | |} | ||
| Line 92: | Line 115: | ||
| |Now, we need to determine the interval of convergence.   | |Now, we need to determine the interval of convergence.   | ||
| |- | |- | ||
| − | |First, note that <math>|x+1|<1</math> corresponds to the interval <math>(-2,0).</math> | + | |First, note that <math style="vertical-align: -4px">|x+1|<1</math> corresponds to the interval <math style="vertical-align: -4px">(-2,0).</math> | 
| |- | |- | ||
| |To obtain the interval of convergence, we need to test the endpoints of this interval | |To obtain the interval of convergence, we need to test the endpoints of this interval | ||
| |- | |- | ||
| − | |for convergence since the Ratio Test is inconclusive when <math>R=1.</math> | + | |for convergence since the Ratio Test is inconclusive when <math style="vertical-align: -1px">R=1.</math> | 
| |} | |} | ||
| Line 102: | Line 125: | ||
| !Step 4:   | !Step 4:   | ||
| |- | |- | ||
| − | |First, let <math>x=0.</math>   | + | |First, let <math style="vertical-align: -1px">x=0.</math>   | 
| |- | |- | ||
| |Then, the series becomes <math>\sum_{n=0}^\infty \frac{1}{\sqrt{n}}.</math> | |Then, the series becomes <math>\sum_{n=0}^\infty \frac{1}{\sqrt{n}}.</math> | ||
| |- | |- | ||
| − | |We note that this is a <math>p</math>-series with <math>p=\frac{1}{2}.</math> | + | |We note that this is a <math style="vertical-align: -3px">p</math>-series with <math style="vertical-align: -12px">p=\frac{1}{2}.</math> | 
| |- | |- | ||
| |Since <math>p<1,</math> the series diverges. | |Since <math>p<1,</math> the series diverges. | ||
| |- | |- | ||
| − | |Hence, we do not include <math>x=0</math> in the interval. | + | |Hence, we do not include <math style="vertical-align: -1px">x=0</math> in the interval. | 
| |} | |} | ||
| Line 116: | Line 139: | ||
| !Step 5:   | !Step 5:   | ||
| |- | |- | ||
| − | |Now, let <math>x=-2.</math> | + | |Now, let <math style="vertical-align: -1px">x=-2.</math> | 
| |- | |- | ||
| |Then, the series becomes <math>\sum_{n=0}^\infty (-1)^n \frac{1}{\sqrt{n}}.</math> | |Then, the series becomes <math>\sum_{n=0}^\infty (-1)^n \frac{1}{\sqrt{n}}.</math> | ||
| Line 122: | Line 145: | ||
| |This series is alternating.   | |This series is alternating.   | ||
| |- | |- | ||
| − | |Let <math>b_n=\frac{1}{\sqrt{n}}.</math> | + | |Let <math style="vertical-align: -20px">b_n=\frac{1}{\sqrt{n}}.</math> | 
| |- | |- | ||
| |The sequence <math>\{b_n\}</math> is decreasing since | |The sequence <math>\{b_n\}</math> is decreasing since | ||
| Line 128: | Line 151: | ||
| |        <math>\frac{1}{\sqrt{n+1}}<\frac{1}{\sqrt{n}}</math> | |        <math>\frac{1}{\sqrt{n+1}}<\frac{1}{\sqrt{n}}</math> | ||
| |- | |- | ||
| − | |for all <math>n\ge 1.</math> | + | |for all <math style="vertical-align: -3px">n\ge 1.</math> | 
| |- | |- | ||
| |Also, | |Also, | ||
| Line 136: | Line 159: | ||
| |Therefore, the series converges by the Alternating Series Test. | |Therefore, the series converges by the Alternating Series Test. | ||
| |- | |- | ||
| − | |Hence, we include <math>x=-2</math> in our interval of convergence. | + | |Hence, we include <math style="vertical-align: -1px">x=-2</math> in our interval of convergence. | 
| |} | |} | ||
| Line 142: | Line 165: | ||
| !Step 6:   | !Step 6:   | ||
| |- | |- | ||
| − | |The interval of convergence is <math>[-2,0).</math> | + | |The interval of convergence is <math style="vertical-align: -4px">[-2,0).</math> | 
| |} | |} | ||
| Line 149: | Line 172: | ||
| !Final Answer:     | !Final Answer:     | ||
| |- | |- | ||
| − | |    '''(a)'''     The radius of convergence is <math>R=0</math> and the interval of convergence is <math>\{0\}.</math> | + | |    '''(a)'''     The radius of convergence is <math style="vertical-align: -1px">R=0</math> and the interval of convergence is <math>\{0\}.</math> | 
| |- | |- | ||
| − | |    '''(b)'''     The radius of convergence is <math>R=1</math> and the interval fo convergence is <math>[-2,0).</math> | + | |    '''(b)'''     The radius of convergence is <math style="vertical-align: -1px">R=1</math> and the interval fo convergence is <math style="vertical-align: -4px">[-2,0).</math> | 
| |} | |} | ||
| [[009C_Sample_Midterm_2|'''<u>Return to Sample Exam</u>''']] | [[009C_Sample_Midterm_2|'''<u>Return to Sample Exam</u>''']] | ||
Revision as of 17:39, 15 February 2017
Find the radius of convergence and interval of convergence of the series.
- a)
- b)
 
| Foundations: | 
|---|
| 1. Root Test | 
| Let be a positive sequence and let | 
| Then, | 
| If the series converges. | 
| If the series is divergent. | 
| If the test is inconclusive. | 
| 2. Ratio Test | 
| Let be a series and | 
| Then, | 
| If the series is absolutely convergent. | 
| If the series is divergent. | 
| If the test is inconclusive. | 
Solution:
(a)
| Step 1: | 
|---|
| We begin by applying the Root Test. | 
| We have | 
| 
 | 
| Step 2: | 
|---|
| This means that as long as this series diverges. | 
| Hence, the radius of convergence is and | 
| the interval of convergence is | 
(b)
| Step 1: | 
|---|
| We first use the Ratio Test to determine the radius of convergence. | 
| We have | 
| Step 2: | 
|---|
| The Ratio Test tells us this series is absolutely convergent if | 
| Hence, the Radius of Convergence of this series is | 
| Step 3: | 
|---|
| Now, we need to determine the interval of convergence. | 
| First, note that corresponds to the interval | 
| To obtain the interval of convergence, we need to test the endpoints of this interval | 
| for convergence since the Ratio Test is inconclusive when | 
| Step 4: | 
|---|
| First, let | 
| Then, the series becomes | 
| We note that this is a -series with | 
| Since the series diverges. | 
| Hence, we do not include in the interval. | 
| Step 5: | 
|---|
| Now, let | 
| Then, the series becomes | 
| This series is alternating. | 
| Let | 
| The sequence is decreasing since | 
| for all | 
| Also, | 
| Therefore, the series converges by the Alternating Series Test. | 
| Hence, we include in our interval of convergence. | 
| Step 6: | 
|---|
| The interval of convergence is | 
| Final Answer: | 
|---|
| (a) The radius of convergence is and the interval of convergence is | 
| (b) The radius of convergence is and the interval fo convergence is |