Difference between revisions of "009C Sample Midterm 2, Problem 4"

From Grad Wiki
Jump to navigation Jump to search
Line 56: Line 56:
 
'''(b)'''
 
'''(b)'''
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
!Step 1:    
+
!Step 1:  
 
|-
 
|-
|
+
|We first use the Ratio Test to determine the radius of convergence.
 
|-
 
|-
|
+
|We have
 
|-
 
|-
|
+
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 +
\displaystyle{\lim_{n\rightarrow \infty}|\frac{a_{n+1}}{a_n}|} & = & \displaystyle{\lim_{n\rightarrow \infty} \bigg|\frac{\sqrt{n+1}x^{n+1}}{\sqrt{n}x^n}\bigg|}\\
 +
&&\\
 +
& = & \displaystyle{\lim_{n\rightarrow \infty} \bigg|\frac{\sqrt{n+1}}{\sqrt{n}}x\bigg|}\\
 +
&&\\
 +
& = & \displaystyle{\lim_{n\rightarrow \infty} \sqrt{\frac{n+1}{n}}|x|}\\
 +
&&\\
 +
& = & \displaystyle{|x|\lim_{n\rightarrow \infty} \sqrt{\frac{n+1}{n}}}\\
 +
&&\\
 +
& = & \displaystyle{|x|\sqrt{\lim_{n\rightarrow \infty} \frac{n+1}{n}}}\\
 +
&&\\
 +
& = & \displaystyle{|x|\sqrt{1}}\\
 +
&&\\
 +
&=& \displaystyle{|x|.}
 +
\end{array}</math>
 +
|}
 +
 
 +
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 +
!Step 2: &nbsp;
 +
|-
 +
|The Ratio Test tells us this series is absolutely convergent if <math>|x|<1.</math>
 
|-
 
|-
|
+
|Hence, the Radius of Convergence of this series is <math>R=1.</math>
 
|}
 
|}
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
!Step 2: &nbsp;
+
!Step 3: &nbsp;
 +
|-
 +
|Now, we need to determine the interval of convergence.
 +
|-
 +
|First, note that <math>|x|<1</math> corresponds to the interval <math>(-1,1).</math>
 +
|-
 +
|To obtain the interval of convergence, we need to test the endpoints of this interval
 +
|-
 +
|for convergence since the Ratio Test is inconclusive when <math>R=1.</math>
 +
|}
 +
 
 +
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 +
!Step 4: &nbsp;
 +
|-
 +
|First, let <math>x=1.</math>
 +
|-
 +
|Then, the series becomes <math>\sum_{n=0}^\infty \sqrt{n}.</math>
 +
|-
 +
|We note that
 +
|-
 +
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\lim_{n\rightarrow \infty} \sqrt{n}=\infty.</math>
 +
|-
 +
|Therefore, the series diverges by the <math>n</math>th term test.
 +
|-
 +
|Hence, we do not include <math>x=1</math> in the interval.
 +
|}
 +
 
 +
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 +
!Step 5: &nbsp;
 +
|-
 +
|Now, let <math>x=-1.</math>
 +
|-
 +
|Then, the series becomes <math>\sum_{n=0}^\infty (-1)^n \sqrt{n}.</math>
 +
|-
 +
|Since <math>\lim_{n\rightarrow \infty} \sqrt{n}=\infty,</math>
 +
|-
 +
|we have
 
|-
 
|-
|  
+
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\lim_{n\rightarrow \infty} (-1)^n\sqrt{n}=</math>DNE.
 
|-
 
|-
|
+
|Therefore, the series diverges by the <math>n</math>th term test.
 
|-
 
|-
|
+
|Hence, we do not include <math>x=-1 </math> in the interval.
 +
|}
 +
 
 +
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 +
!Step 6: &nbsp;
 
|-
 
|-
|
+
|The interval of convergence is <math>(-1,1).</math>
 
|}
 
|}
  

Revision as of 10:26, 13 February 2017

Find the radius of convergence and interval of convergence of the series.

a)
b)


Foundations:  
Root Test
Ratio Test


Solution:

(a)

Step 1:  
We begin by applying the Root Test.
We have

       

Step 2:  
This means that as long as this series diverges.
Hence, the radius of convergence is and
the interval of convergence is

(b)

Step 1:  
We first use the Ratio Test to determine the radius of convergence.
We have
       
Step 2:  
The Ratio Test tells us this series is absolutely convergent if
Hence, the Radius of Convergence of this series is
Step 3:  
Now, we need to determine the interval of convergence.
First, note that corresponds to the interval
To obtain the interval of convergence, we need to test the endpoints of this interval
for convergence since the Ratio Test is inconclusive when
Step 4:  
First, let
Then, the series becomes
We note that
       
Therefore, the series diverges by the th term test.
Hence, we do not include in the interval.
Step 5:  
Now, let
Then, the series becomes
Since
we have
        DNE.
Therefore, the series diverges by the th term test.
Hence, we do not include in the interval.
Step 6:  
The interval of convergence is


Final Answer:  
    (a)     The radius of convergence is and the interval of convergence is
    (b)     The radius of convergence is and the interval fo convergence is

Return to Sample Exam