Difference between revisions of "009C Sample Midterm 1, Problem 2"

From Grad Wiki
Jump to navigation Jump to search
Line 34: Line 34:
 
|Next, we calculate <math>s_3</math> and <math>s_4.</math> We have
 
|Next, we calculate <math>s_3</math> and <math>s_4.</math> We have
 
|-
 
|-
|
+
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 +
\displaystyle{s_3} & = & \displaystyle{2\bigg(\frac{1}{2^2}-\frac{1}{2^3}\bigg)+2\bigg(\frac{1}{2^3}-\frac{1}{2^4}\bigg)}\\
 +
&&\\
 +
& = & \displaystyle{2\bigg(\frac{1}{2^2}-\frac{1}{2^4}\bigg)}
 +
\end{array}</math>
 +
|-
 +
|and
 +
|-
 +
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 +
\displaystyle{s_4} & = & \displaystyle{2\bigg(\frac{1}{2^2}-\frac{1}{2^3}\bigg)+2\bigg(\frac{1}{2^3}-\frac{1}{2^4}\bigg)+2\bigg(\frac{1}{2^4}-\frac{1}{2^5}\bigg)}\\
 +
&&\\
 +
& = & \displaystyle{2\bigg(\frac{1}{2^2}-\frac{1}{2^5}\bigg).}
 +
\end{array}</math>
 +
|}
 +
 
 +
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 +
!Step 3: &nbsp;
 +
|-
 +
|If we look at <math>s_2,s_3,s_4, </math> we notice a pattern.
 +
|-
 +
|From this pattern, we get the formula
 +
|-
 +
|&nbsp; &nbsp; &nbsp; &nbsp; <math>s_n=2\bigg(\frac{1}{2^2}-\frac{1}{2^{n+1}}\bigg).</math>
 
|}
 
|}
  

Revision as of 13:59, 12 February 2017

Consider the infinite series

a) Find an expression for the th partial sum Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle s_n} of the series.
b) Compute


Foundations:  
The th partial sum, for a series
is defined as

       

Solution:

(a)

Step 1:  
We need to find a pattern for the partial sums in order to find a formula.
We start by calculating . We have
       
Step 2:  
Next, we calculate and We have
       
and
       
Step 3:  
If we look at we notice a pattern.
From this pattern, we get the formula
       

(b)

Step 1:  
Step 2:  
Final Answer:  
(a)
(b)

Return to Sample Exam