Difference between revisions of "009B Sample Midterm 2, Problem 4"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
Line 11: | Line 11: | ||
| <math style="vertical-align: -15px">\int u~dv=uv-\int v~du.</math> | | <math style="vertical-align: -15px">\int u~dv=uv-\int v~du.</math> | ||
|- | |- | ||
− | |'''2.''' How would you integrate <math style="vertical-align: -15px">\int e^x\sin x~dx?</math> | + | |'''2.''' How would you integrate <math style="vertical-align: -15px">\int e^x\sin x~dx?</math> |
|- | |- | ||
| | | | ||
Line 17: | Line 17: | ||
|- | |- | ||
| | | | ||
− | Let <math style="vertical-align: -5px">u=\sin(x)</math> and <math style="vertical-align: 0px">dv=e^x~dx.</math> | + | Let <math style="vertical-align: -5px">u=\sin(x)</math> and <math style="vertical-align: 0px">dv=e^x~dx.</math> |
|- | |- | ||
− | | Then, <math style="vertical-align: -5px">du=\cos(x)~dx</math> and <math style="vertical-align: 0px">v=e^x.</math> | + | | Then, <math style="vertical-align: -5px">du=\cos(x)~dx</math> and <math style="vertical-align: 0px">v=e^x.</math> |
|- | |- | ||
| | | | ||
− | Thus, <math style="vertical-align: -15px">\int e^x\sin x~dx=e^x\sin(x)-\int e^x\cos(x)~dx.</math> | + | Thus, <math style="vertical-align: -15px">\int e^x\sin x~dx=e^x\sin(x)-\int e^x\cos(x)~dx.</math> |
|- | |- | ||
| | | | ||
Line 28: | Line 28: | ||
|- | |- | ||
| | | | ||
− | Let <math style="vertical-align: -5px">u=\cos(x)</math> and <math style="vertical-align: 0px">dv=e^x~dx.</math> | + | Let <math style="vertical-align: -5px">u=\cos(x)</math> and <math style="vertical-align: 0px">dv=e^x~dx.</math> |
|- | |- | ||
− | | Then, <math style="vertical-align: -5px">du=-\sin(x)~dx</math> and <math style="vertical-align: 0px">v=e^x.</math> | + | | Then, <math style="vertical-align: -5px">du=-\sin(x)~dx</math> and <math style="vertical-align: 0px">v=e^x.</math> |
|- | |- | ||
| Therefore, | | Therefore, | ||
Line 50: | Line 50: | ||
|- | |- | ||
| | | | ||
− | Hence, <math style="vertical-align: -15px">\int e^x\sin (x)~dx=\frac{e^x}{2}(\sin(x)-\cos(x))+C.</math> | + | Hence, <math style="vertical-align: -15px">\int e^x\sin (x)~dx=\frac{e^x}{2}(\sin(x)-\cos(x))+C.</math> |
|} | |} | ||
Line 60: | Line 60: | ||
|We proceed using integration by parts. | |We proceed using integration by parts. | ||
|- | |- | ||
− | |Let <math style="vertical-align: -5px">u=\sin(2x)</math> and <math style="vertical-align: 0px">dv=e^{-2x}dx.</math> | + | |Let <math style="vertical-align: -5px">u=\sin(2x)</math> and <math style="vertical-align: 0px">dv=e^{-2x}dx.</math> |
|- | |- | ||
− | |Then, <math style="vertical-align: -5px">du=2\cos(2x)dx</math> and <math style="vertical-align: -13px">v=\frac{e^{-2x}}{-2}.</math> | + | |Then, <math style="vertical-align: -5px">du=2\cos(2x)dx</math> and <math style="vertical-align: -13px">v=\frac{e^{-2x}}{-2}.</math> |
|- | |- | ||
|Thus, we get | |Thus, we get | ||
Line 79: | Line 79: | ||
|Now, we need to use integration by parts again. | |Now, we need to use integration by parts again. | ||
|- | |- | ||
− | |Let <math style="vertical-align: -5px">u=\cos(2x)</math> and <math style="vertical-align: 0px">dv=e^{-2x}dx.</math> | + | |Let <math style="vertical-align: -5px">u=\cos(2x)</math> and <math style="vertical-align: 0px">dv=e^{-2x}dx.</math> |
|- | |- | ||
− | |Then, <math style="vertical-align: -5px">du=-2\sin(2x)dx</math> and <math style="vertical-align: -13px">v=\frac{e^{-2x}}{-2}.</math> | + | |Then, <math style="vertical-align: -5px">du=-2\sin(2x)dx</math> and <math style="vertical-align: -13px">v=\frac{e^{-2x}}{-2}.</math> |
|- | |- | ||
|Therefore, we get | |Therefore, we get |
Revision as of 18:28, 26 February 2017
Evaluate the integral:
Foundations: |
---|
1. Integration by parts tells us |
2. How would you integrate |
You could use integration by parts. |
Let and |
Then, and |
Thus, |
Now, we need to use integration by parts a second time. |
Let and |
Then, and |
Therefore, |
|
Notice, we are back where we started. |
Therefore, adding the last term on the right hand side to the opposite side, we get |
|
Hence, |
Solution:
Step 1: |
---|
We proceed using integration by parts. |
Let and |
Then, and |
Thus, we get |
|
Step 2: |
---|
Now, we need to use integration by parts again. |
Let and |
Then, and |
Therefore, we get |
|
Step 3: |
---|
Notice that the integral on the right of the last equation in Step 2 |
is the same integral that we had at the beginning of the problem. |
Thus, if we add the integral on the right to the other side of the equation, we get |
Now, we divide both sides by 2 to get |
Thus, the final answer is |
Final Answer: |
---|