Difference between revisions of "009B Sample Midterm 3, Problem 1"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
| Line 1: | Line 1: | ||
| − | <span class="exam">Divide the interval <math style="vertical-align: -5px">[0,\pi]</math> into four subintervals of equal length <math>\frac{\pi}{4}</math> and compute the right-endpoint Riemann sum of <math style="vertical-align: -5px">y=\sin (x).</math> | + | <span class="exam">Divide the interval <math style="vertical-align: -5px">[0,\pi]</math> into four subintervals of equal length <math>\frac{\pi}{4}</math> and compute the right-endpoint Riemann sum of <math style="vertical-align: -5px">y=\sin (x).</math> |
Revision as of 17:13, 18 February 2017
Divide the interval into four subintervals of equal length and compute the right-endpoint Riemann sum of
| Foundations: |
|---|
|
1. The height of each rectangle in the right-hand Riemann sum |
| is given by choosing the right endpoint of the interval. |
|
2. See the Riemann sums (insert link) for more information. |
Solution:
| Step 1: |
|---|
| Let |
| Each interval has length |
| Therefore, the right-endpoint Riemann sum of on the interval is |
|
|
| Step 2: |
|---|
| Thus, the right-endpoint Riemann sum is |
|
|
| Final Answer: |
|---|