Difference between revisions of "009B Sample Midterm 2, Problem 5"

From Grad Wiki
Jump to navigation Jump to search
Line 36: Line 36:
 
|First, we write  
 
|First, we write  
 
|-
 
|-
|&nbsp; &nbsp; <math style="vertical-align: -13px">\int \tan^4(x)~dx=\int \tan^2(x) \tan^2(x)~dx.</math>  
+
|&nbsp; &nbsp; &nbsp; &nbsp; <math style="vertical-align: -13px">\int \tan^4(x)~dx=\int \tan^2(x) \tan^2(x)~dx.</math>  
 
|-
 
|-
 
|Using the trig identity <math style="vertical-align: -5px">\sec^2(x)=\tan^2(x)+1,</math>  
 
|Using the trig identity <math style="vertical-align: -5px">\sec^2(x)=\tan^2(x)+1,</math>  
 
|-
 
|-
|we have <math style="vertical-align: -5px">\tan^2(x)=\sec^2(x)-1.</math>
+
|we have  
 +
|-
 +
|&nbsp; &nbsp; &nbsp; &nbsp;<math style="vertical-align: -5px">\tan^2(x)=\sec^2(x)-1.</math>
 
|-
 
|-
 
|Plugging in the last identity into one of the <math style="vertical-align: -5px">\tan^2(x),</math> we get
 
|Plugging in the last identity into one of the <math style="vertical-align: -5px">\tan^2(x),</math> we get
 
|-
 
|-
 
|  
 
|  
&nbsp; &nbsp; <math>\begin{array}{rcl}
+
&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 
\displaystyle{\int \tan^4(x)~dx} & = & \displaystyle{\int \tan^2(x) (\sec^2(x)-1)~dx}\\
 
\displaystyle{\int \tan^4(x)~dx} & = & \displaystyle{\int \tan^2(x) (\sec^2(x)-1)~dx}\\
 
&&\\
 
&&\\
Line 61: Line 63:
 
|So, we have  
 
|So, we have  
 
|-
 
|-
|&nbsp; &nbsp; <math style="vertical-align: -13px">\int \tan^4(x)~dx=\int \tan^2(x)\sec^2(x)~dx-\int (\sec^2x-1)~dx.</math>
+
|&nbsp; &nbsp; &nbsp; &nbsp; <math style="vertical-align: -13px">\int \tan^4(x)~dx=\int \tan^2(x)\sec^2(x)~dx-\int (\sec^2x-1)~dx.</math>
 
|-
 
|-
 
|For the first integral, we need to use <math style="vertical-align: 0px">u</math>-substitution.  
 
|For the first integral, we need to use <math style="vertical-align: 0px">u</math>-substitution.  
Line 71: Line 73:
 
|So, we have
 
|So, we have
 
|-
 
|-
| &nbsp;&nbsp; <math style="vertical-align: -13px">\int \tan^4(x)~dx=\int u^2~du-\int (\sec^2(x)-1)~dx.</math>
+
| &nbsp; &nbsp; &nbsp; &nbsp; <math style="vertical-align: -13px">\int \tan^4(x)~dx=\int u^2~du-\int (\sec^2(x)-1)~dx.</math>
 
|}
 
|}
  
Line 80: Line 82:
 
|-
 
|-
 
|  
 
|  
&nbsp; &nbsp; <math>\begin{array}{rcl}
+
&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 
\displaystyle{\int \tan^4(x)~dx} & = & \displaystyle{\frac{u^3}{3}-(\tan(x)-x)+C}\\
 
\displaystyle{\int \tan^4(x)~dx} & = & \displaystyle{\frac{u^3}{3}-(\tan(x)-x)+C}\\
 
&&\\
 
&&\\
Line 91: Line 93:
 
!Final Answer: &nbsp;  
 
!Final Answer: &nbsp;  
 
|-
 
|-
| &nbsp;&nbsp; <math>\frac{\tan^3(x)}{3}-\tan(x)+x+C</math>
+
| &nbsp; &nbsp; &nbsp; &nbsp; <math>\frac{\tan^3(x)}{3}-\tan(x)+x+C</math>
 
|}
 
|}
 
[[009B_Sample_Midterm_2|'''<u>Return to Sample Exam</u>''']]
 
[[009B_Sample_Midterm_2|'''<u>Return to Sample Exam</u>''']]

Revision as of 18:48, 7 February 2017

Evaluate the integral:


Foundations:  
1. Recall the trig identity
       
2. Also,
       
3. How would you integrate

        You could use -substitution.

        Let
        Then,

        Thus,


Solution:

Step 1:  
First, we write
       
Using the trig identity
we have
       
Plugging in the last identity into one of the we get

       

by using the identity again on the last equality.
Step 2:  
So, we have
       
For the first integral, we need to use -substitution.
Let
Then,
So, we have
       
Step 3:  
We integrate to get

       


Final Answer:  
       

Return to Sample Exam