Difference between revisions of "009B Sample Midterm 2, Problem 5"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
Line 36: | Line 36: | ||
|First, we write | |First, we write | ||
|- | |- | ||
− | | <math style="vertical-align: -13px">\int \tan^4(x)~dx=\int \tan^2(x) \tan^2(x)~dx.</math> | + | | <math style="vertical-align: -13px">\int \tan^4(x)~dx=\int \tan^2(x) \tan^2(x)~dx.</math> |
|- | |- | ||
|Using the trig identity <math style="vertical-align: -5px">\sec^2(x)=\tan^2(x)+1,</math> | |Using the trig identity <math style="vertical-align: -5px">\sec^2(x)=\tan^2(x)+1,</math> | ||
|- | |- | ||
− | |we have <math style="vertical-align: -5px">\tan^2(x)=\sec^2(x)-1.</math> | + | |we have |
+ | |- | ||
+ | | <math style="vertical-align: -5px">\tan^2(x)=\sec^2(x)-1.</math> | ||
|- | |- | ||
|Plugging in the last identity into one of the <math style="vertical-align: -5px">\tan^2(x),</math> we get | |Plugging in the last identity into one of the <math style="vertical-align: -5px">\tan^2(x),</math> we get | ||
|- | |- | ||
| | | | ||
− | <math>\begin{array}{rcl} | + | <math>\begin{array}{rcl} |
\displaystyle{\int \tan^4(x)~dx} & = & \displaystyle{\int \tan^2(x) (\sec^2(x)-1)~dx}\\ | \displaystyle{\int \tan^4(x)~dx} & = & \displaystyle{\int \tan^2(x) (\sec^2(x)-1)~dx}\\ | ||
&&\\ | &&\\ | ||
Line 61: | Line 63: | ||
|So, we have | |So, we have | ||
|- | |- | ||
− | | <math style="vertical-align: -13px">\int \tan^4(x)~dx=\int \tan^2(x)\sec^2(x)~dx-\int (\sec^2x-1)~dx.</math> | + | | <math style="vertical-align: -13px">\int \tan^4(x)~dx=\int \tan^2(x)\sec^2(x)~dx-\int (\sec^2x-1)~dx.</math> |
|- | |- | ||
|For the first integral, we need to use <math style="vertical-align: 0px">u</math>-substitution. | |For the first integral, we need to use <math style="vertical-align: 0px">u</math>-substitution. | ||
Line 71: | Line 73: | ||
|So, we have | |So, we have | ||
|- | |- | ||
− | | <math style="vertical-align: -13px">\int \tan^4(x)~dx=\int u^2~du-\int (\sec^2(x)-1)~dx.</math> | + | | <math style="vertical-align: -13px">\int \tan^4(x)~dx=\int u^2~du-\int (\sec^2(x)-1)~dx.</math> |
|} | |} | ||
Line 80: | Line 82: | ||
|- | |- | ||
| | | | ||
− | <math>\begin{array}{rcl} | + | <math>\begin{array}{rcl} |
\displaystyle{\int \tan^4(x)~dx} & = & \displaystyle{\frac{u^3}{3}-(\tan(x)-x)+C}\\ | \displaystyle{\int \tan^4(x)~dx} & = & \displaystyle{\frac{u^3}{3}-(\tan(x)-x)+C}\\ | ||
&&\\ | &&\\ | ||
Line 91: | Line 93: | ||
!Final Answer: | !Final Answer: | ||
|- | |- | ||
− | | <math>\frac{\tan^3(x)}{3}-\tan(x)+x+C</math> | + | | <math>\frac{\tan^3(x)}{3}-\tan(x)+x+C</math> |
|} | |} | ||
[[009B_Sample_Midterm_2|'''<u>Return to Sample Exam</u>''']] | [[009B_Sample_Midterm_2|'''<u>Return to Sample Exam</u>''']] |
Revision as of 18:48, 7 February 2017
Evaluate the integral:
Foundations: |
---|
1. Recall the trig identity |
2. Also, |
3. How would you integrate |
You could use -substitution. |
Let |
Then, |
Thus, |
Solution:
Step 1: |
---|
First, we write |
Using the trig identity |
we have |
Plugging in the last identity into one of the we get |
|
by using the identity again on the last equality. |
Step 2: |
---|
So, we have |
For the first integral, we need to use -substitution. |
Let |
Then, |
So, we have |
Step 3: |
---|
We integrate to get |
|
Final Answer: |
---|