Difference between revisions of "009B Sample Midterm 1, Problem 5"

From Grad Wiki
Jump to navigation Jump to search
Line 1: Line 1:
 
<span class="exam">Let <math>f(x)=1-x^2</math>.
 
<span class="exam">Let <math>f(x)=1-x^2</math>.
  
::<span class="exam">a) Compute the left-hand Riemann sum approximation of <math style="vertical-align: -14px">\int_0^3 f(x)~dx</math> with <math style="vertical-align: 0px">n=3</math> boxes.
+
<span class="exam">(a) Compute the left-hand Riemann sum approximation of <math style="vertical-align: -14px">\int_0^3 f(x)~dx</math> with <math style="vertical-align: 0px">n=3</math> boxes.
::<span class="exam">b) Compute the right-hand Riemann sum approximation of <math style="vertical-align: -14px">\int_0^3 f(x)~dx</math> with <math style="vertical-align: 0px">n=3</math> boxes.
+
 
::<span class="exam">c) Express <math style="vertical-align: -14px">\int_0^3 f(x)~dx</math> as a limit of right-hand Riemann sums (as in the definition of the definite integral). Do not evaluate the limit.
+
<span class="exam">(b) Compute the right-hand Riemann sum approximation of <math style="vertical-align: -14px">\int_0^3 f(x)~dx</math> with <math style="vertical-align: 0px">n=3</math> boxes.
 +
 
 +
<span class="exam">(c) Express <math style="vertical-align: -14px">\int_0^3 f(x)~dx</math> as a limit of right-hand Riemann sums (as in the definition of the definite integral). Do not evaluate the limit.
  
  

Revision as of 17:10, 18 February 2017

Let .

(a) Compute the left-hand Riemann sum approximation of with boxes.

(b) Compute the right-hand Riemann sum approximation of with boxes.

(c) Express as a limit of right-hand Riemann sums (as in the definition of the definite integral). Do not evaluate the limit.


Foundations:  
1. The height of each rectangle in the left-hand Riemann sum is given by choosing the left endpoint of the interval.
2. The height of each rectangle in the right-hand Riemann sum is given by choosing the right endpoint of the interval.
3. See the Riemann sums (insert link) for more information.


Solution:

(a)

Step 1:  
Since our interval is and we are using 3 rectangles, each rectangle has width 1.
So, the left-hand Riemann sum is
      
Step 2:  
Thus, the left-hand Riemann sum is

       

(b)

Step 1:  
Since our interval is and we are using 3 rectangles, each rectangle has width 1.
So, the right-hand Riemann sum is
      
Step 2:  
Thus, the right-hand Riemann sum is

       

(c)

Step 1:  
Let be the number of rectangles used in the right-hand Riemann sum for
The width of each rectangle is
       
Step 2:  
So, the right-hand Riemann sum is
      
Finally, we let go to infinity to get a limit.
Thus, is equal to


Final Answer:  
    (a)    
    (b)    
    (c)    

Return to Sample Exam