Difference between revisions of "009B Sample Midterm 1, Problem 4"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
Line 11: | Line 11: | ||
| <math style="vertical-align: -2px">\sin^2x+\cos^2x=1</math> | | <math style="vertical-align: -2px">\sin^2x+\cos^2x=1</math> | ||
|- | |- | ||
− | |'''2.''' How would you integrate <math style="vertical-align: -14px">\int \sin^2x\cos x~dx?</math> | + | |'''2.''' How would you integrate <math style="vertical-align: -14px">\int \sin^2x\cos x~dx?</math> |
|- | |- | ||
| | | | ||
− | You could use <math style="vertical-align: 0px">u</math>-substitution. | + | You could use <math style="vertical-align: 0px">u</math>-substitution. |
|- | |- | ||
− | | Let <math style="vertical-align: -2px">u=\sin x.</math> | + | | Let <math style="vertical-align: -2px">u=\sin x.</math> |
|- | |- | ||
− | | Then, <math style="vertical-align: -1px">du=\cos x~dx.</math> | + | | Then, <math style="vertical-align: -1px">du=\cos x~dx.</math> |
|- | |- | ||
| Thus, | | Thus, | ||
Line 41: | Line 41: | ||
| <math style="vertical-align: -13px">\int\sin^3x\cos^2x~dx=\int (\sin x) \sin^2x\cos^2x~dx.</math> | | <math style="vertical-align: -13px">\int\sin^3x\cos^2x~dx=\int (\sin x) \sin^2x\cos^2x~dx.</math> | ||
|- | |- | ||
− | |Using the identity <math style="vertical-align: -4px">\sin^2x+\cos^2x=1,</math> | + | |Using the identity <math style="vertical-align: -4px">\sin^2x+\cos^2x=1,</math> |
|- | |- | ||
− | |we get <math style="vertical-align: -1px">\sin^2x=1-\cos^2x.</math> | + | |we get <math style="vertical-align: -1px">\sin^2x=1-\cos^2x.</math> |
|- | |- | ||
|If we use this identity, we have | |If we use this identity, we have | ||
Line 58: | Line 58: | ||
!Step 2: | !Step 2: | ||
|- | |- | ||
− | |Now, we use <math style="vertical-align: 0px">u</math>-substitution. | + | |Now, we use <math style="vertical-align: 0px">u</math>-substitution. |
|- | |- | ||
− | |Let <math style="vertical-align: -5px">u=\cos(x).</math> | + | |Let <math style="vertical-align: -5px">u=\cos(x).</math> |
|- | |- | ||
− | |Then, <math style="vertical-align: -5px">du=-\sin(x)dx.</math> | + | |Then, <math style="vertical-align: -5px">du=-\sin(x)dx.</math> |
|- | |- | ||
|Therefore, | |Therefore, |
Revision as of 17:59, 26 February 2017
Evaluate the integral:
Foundations: |
---|
1. Recall the trig identity |
2. How would you integrate |
You could use -substitution. |
Let |
Then, |
Thus, |
|
Solution:
Step 1: |
---|
First, we write |
Using the identity |
we get |
If we use this identity, we have |
|
Step 2: |
---|
Now, we use -substitution. |
Let |
Then, |
Therefore, |
|
Final Answer: |
---|