Difference between revisions of "009B Sample Midterm 1, Problem 4"

From Grad Wiki
Jump to navigation Jump to search
Line 14: Line 14:
 
|-
 
|-
 
|
 
|
&nbsp; &nbsp; &nbsp; &nbsp; You could use <math style="vertical-align: 0px">u</math>-substitution. Let <math style="vertical-align: -2px">u=\sin x.</math>  
+
&nbsp; &nbsp; &nbsp; &nbsp; You could use <math style="vertical-align: 0px">u</math>-substitution.
 +
|-
 +
|Let <math style="vertical-align: -2px">u=\sin x.</math>  
 
|-
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; Then, <math style="vertical-align: -1px">du=\cos x~dx.</math> Thus,  
 
|&nbsp; &nbsp; &nbsp; &nbsp; Then, <math style="vertical-align: -1px">du=\cos x~dx.</math> Thus,  
Line 76: Line 78:
 
!Final Answer: &nbsp;  
 
!Final Answer: &nbsp;  
 
|-
 
|-
| &nbsp;&nbsp; &nbsp; &nbsp;<math>\frac{\cos^5x}{5}-\frac{\cos^3x}{3}+C</math>
+
| &nbsp; &nbsp; &nbsp; &nbsp;<math>\frac{\cos^5x}{5}-\frac{\cos^3x}{3}+C</math>
 
|}
 
|}
 
[[009B_Sample_Midterm_1|'''<u>Return to Sample Exam</u>''']]
 
[[009B_Sample_Midterm_1|'''<u>Return to Sample Exam</u>''']]

Revision as of 16:56, 7 February 2017

Evaluate the integral:


Foundations:  
1. Recall the trig identity
       
2. How would you integrate

        You could use -substitution.

Let
        Then, Thus,

       


Solution:

Step 1:  
First, we write
       
Using the identity
we get
If we use this identity, we have

       

Step 2:  
Now, we use -substitution.
Let
Then,
Therefore,

       


Final Answer:  
       

Return to Sample Exam