Difference between revisions of "009B Sample Midterm 2, Problem 4"

From Grad Wiki
Jump to navigation Jump to search
Line 9: Line 9:
 
|'''1.''' Integration by parts tells us  
 
|'''1.''' Integration by parts tells us  
 
|-
 
|-
|&nbsp; &nbsp; <math style="vertical-align: -15px">\int u~dv=uv-\int v~du.</math>
+
|&nbsp; &nbsp; &nbsp; &nbsp; <math style="vertical-align: -15px">\int u~dv=uv-\int v~du.</math>
 
|-
 
|-
 
|'''2.''' How would you integrate <math style="vertical-align: -15px">\int e^x\sin x~dx?</math>
 
|'''2.''' How would you integrate <math style="vertical-align: -15px">\int e^x\sin x~dx?</math>
 
|-
 
|-
 
|
 
|
&nbsp; &nbsp; You could use integration by parts.
+
&nbsp; &nbsp; &nbsp; &nbsp; You could use integration by parts.
 
|-
 
|-
 
|
 
|
&nbsp; &nbsp; Let <math style="vertical-align: -5px">u=\sin(x)</math> and <math style="vertical-align: 0px">dv=e^x~dx.</math>  
+
&nbsp; &nbsp; &nbsp; &nbsp; Let <math style="vertical-align: -5px">u=\sin(x)</math> and <math style="vertical-align: 0px">dv=e^x~dx.</math>  
 
|-
 
|-
|&nbsp; &nbsp; Then, <math style="vertical-align: -5px">du=\cos(x)~dx</math> and <math style="vertical-align: 0px">v=e^x.</math>
+
|&nbsp; &nbsp; &nbsp; &nbsp; Then, <math style="vertical-align: -5px">du=\cos(x)~dx</math> and <math style="vertical-align: 0px">v=e^x.</math>
 
|-
 
|-
 
|
 
|
&nbsp; &nbsp; Thus, <math style="vertical-align: -15px">\int e^x\sin x~dx=e^x\sin(x)-\int e^x\cos(x)~dx.</math>
+
&nbsp; &nbsp; &nbsp; &nbsp; Thus, <math style="vertical-align: -15px">\int e^x\sin x~dx=e^x\sin(x)-\int e^x\cos(x)~dx.</math>
 
|-
 
|-
 
|
 
|
&nbsp; &nbsp; Now, we need to use integration by parts a second time.
+
&nbsp; &nbsp; &nbsp; &nbsp; Now, we need to use integration by parts a second time.
 
|-
 
|-
 
|
 
|
&nbsp; &nbsp; Let <math style="vertical-align: -5px">u=\cos(x)</math> and <math style="vertical-align: 0px">dv=e^x~dx.</math> Then, <math style="vertical-align: -5px">du=-\sin(x)~dx</math> and <math style="vertical-align: 0px">v=e^x.</math> So,
+
&nbsp; &nbsp; &nbsp; &nbsp; Let <math style="vertical-align: -5px">u=\cos(x)</math> and <math style="vertical-align: 0px">dv=e^x~dx.</math>  
 +
|-
 +
|&nbsp; &nbsp; &nbsp; &nbsp; Then, <math style="vertical-align: -5px">du=-\sin(x)~dx</math> and <math style="vertical-align: 0px">v=e^x.</math>
 +
|-
 +
|&nbsp; &nbsp; &nbsp; &nbsp; Therefore,
 
|-
 
|-
 
|
 
|
&nbsp; &nbsp; <math>\begin{array}{rcl}
+
&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 
\displaystyle{\int e^x\sin x~dx} & = & \displaystyle{e^x\sin(x)-(e^x\cos(x)-\int -e^x\sin(x)~dx}\\
 
\displaystyle{\int e^x\sin x~dx} & = & \displaystyle{e^x\sin(x)-(e^x\cos(x)-\int -e^x\sin(x)~dx}\\
 
&&\\
 
&&\\
Line 38: Line 42:
 
|-
 
|-
 
|
 
|
&nbsp; &nbsp; Notice, we are back where we started. So, adding the last term on the right hand side to the opposite side,
+
&nbsp; &nbsp; &nbsp; &nbsp; Notice, we are back where we started.  
 +
|-
 +
|&nbsp; &nbsp; &nbsp; &nbsp; Therefore, adding the last term on the right hand side to the opposite side, we get
 
|-
 
|-
 
|
 
|
&nbsp; &nbsp; we get <math style="vertical-align: -13px">2\int e^x\sin (x)~dx=e^x(\sin(x)-\cos(x)).</math>
+
&nbsp; &nbsp; &nbsp; &nbsp; <math style="vertical-align: -13px">2\int e^x\sin (x)~dx=e^x(\sin(x)-\cos(x)).</math>
 
|-
 
|-
 
|
 
|
&nbsp; &nbsp; Hence, <math style="vertical-align: -15px">\int e^x\sin (x)~dx=\frac{e^x}{2}(\sin(x)-\cos(x))+C.</math>
+
&nbsp; &nbsp; &nbsp; &nbsp; Hence, <math style="vertical-align: -15px">\int e^x\sin (x)~dx=\frac{e^x}{2}(\sin(x)-\cos(x))+C.</math>
 
|}
 
|}
  
Line 58: Line 64:
 
|Then, <math style="vertical-align: -5px">du=2\cos(2x)dx</math> and <math style="vertical-align: -13px">v=\frac{e^{-2x}}{-2}.</math>
 
|Then, <math style="vertical-align: -5px">du=2\cos(2x)dx</math> and <math style="vertical-align: -13px">v=\frac{e^{-2x}}{-2}.</math>
 
|-
 
|-
|So, we get  
+
|Thus, we get  
 
|-
 
|-
 
|
 
|
Line 80: Line 86:
 
|-
 
|-
 
|
 
|
&nbsp;&nbsp; <math style="vertical-align: -13px">\int e^{-2x}\sin (2x)~dx=\frac{\sin(2x)e^{-2x}}{-2}+\frac{\cos(2x)e^{-2x}}{-2}-\int e^{-2x}\sin(2x)~dx.</math>
+
&nbsp; &nbsp; &nbsp; &nbsp; <math style="vertical-align: -13px">\int e^{-2x}\sin (2x)~dx=\frac{\sin(2x)e^{-2x}}{-2}+\frac{\cos(2x)e^{-2x}}{-2}-\int e^{-2x}\sin(2x)~dx.</math>
|-
 
|
 
 
|}
 
|}
  
Line 94: Line 98:
 
|Thus, if we add the integral on the right to the other side of the equation, we get
 
|Thus, if we add the integral on the right to the other side of the equation, we get
 
|-
 
|-
| &nbsp;&nbsp; <math>2\int e^{-2x}\sin (2x)~dx=\frac{\sin(2x)e^{-2x}}{-2}+\frac{\cos(2x)e^{-2x}}{-2}.</math>
+
| &nbsp; &nbsp; &nbsp; &nbsp; <math>2\int e^{-2x}\sin (2x)~dx=\frac{\sin(2x)e^{-2x}}{-2}+\frac{\cos(2x)e^{-2x}}{-2}.</math>
 
|-
 
|-
 
|Now, we divide both sides by 2 to get  
 
|Now, we divide both sides by 2 to get  
 
|-
 
|-
| &nbsp;&nbsp; <math>\int e^{-2x}\sin (2x)~dx=\frac{\sin(2x)e^{-2x}}{-4}+\frac{\cos(2x)e^{-2x}}{-4}.</math>
+
| &nbsp; &nbsp; &nbsp; &nbsp; <math>\int e^{-2x}\sin (2x)~dx=\frac{\sin(2x)e^{-2x}}{-4}+\frac{\cos(2x)e^{-2x}}{-4}.</math>
 
|-
 
|-
 
|Thus, the final answer is  
 
|Thus, the final answer is  
 
|-
 
|-
|&nbsp; &nbsp; <math style="vertical-align: -13px">\int e^{-2x}\sin (2x)~dx=\frac{e^{-2x}}{-4}((\sin(2x)+\cos(2x))+C.</math>
+
|&nbsp; &nbsp; &nbsp; &nbsp; <math style="vertical-align: -13px">\int e^{-2x}\sin (2x)~dx=\frac{e^{-2x}}{-4}((\sin(2x)+\cos(2x))+C.</math>
 
|}
 
|}
  

Revision as of 18:54, 7 February 2017

Evaluate the integral:


Foundations:  
1. Integration by parts tells us
       
2. How would you integrate

        You could use integration by parts.

        Let and

        Then, and

        Thus,

        Now, we need to use integration by parts a second time.

        Let and

        Then, and
        Therefore,

       

        Notice, we are back where we started.

        Therefore, adding the last term on the right hand side to the opposite side, we get

       

        Hence,


Solution:

Step 1:  
We proceed using integration by parts.
Let and
Then, and
Thus, we get

       

Step 2:  
Now, we need to use integration by parts again.
Let and
Then, and
Therefore, we get

       

Step 3:  
Notice that the integral on the right of the last equation in Step 2
is the same integral that we had at the beginning of the problem.
Thus, if we add the integral on the right to the other side of the equation, we get
       
Now, we divide both sides by 2 to get
       
Thus, the final answer is
       


Final Answer:  
      

Return to Sample Exam