Difference between revisions of "009B Sample Midterm 3, Problem 5"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
Line 10: | Line 10: | ||
|'''1.''' Recall the trig identity | |'''1.''' Recall the trig identity | ||
|- | |- | ||
− | | <math style="vertical-align: -3px">\tan^2x+1=\sec^2x</math> | + | | <math style="vertical-align: -3px">\tan^2x+1=\sec^2x</math> |
|- | |- | ||
|'''2.''' Recall the trig identity | |'''2.''' Recall the trig identity | ||
|- | |- | ||
− | | <math style="vertical-align: -13px">\sin^2(x)=\frac{1-\cos(2x)}{2}</math> | + | | <math style="vertical-align: -13px">\sin^2(x)=\frac{1-\cos(2x)}{2}</math> |
|- | |- | ||
|'''3.''' How would you integrate <math style="vertical-align: -1px">\tan x~dx?</math> | |'''3.''' How would you integrate <math style="vertical-align: -1px">\tan x~dx?</math> | ||
|- | |- | ||
| | | | ||
− | You could use <math style="vertical-align: 0px">u</math>-substitution. First, write <math style="vertical-align: -14px">\int \tan x~dx=\int \frac{\sin x}{\cos x}~dx.</math> | + | You could use <math style="vertical-align: 0px">u</math>-substitution. |
+ | |- | ||
+ | | First, write <math style="vertical-align: -14px">\int \tan x~dx=\int \frac{\sin x}{\cos x}~dx.</math> | ||
|- | |- | ||
| | | | ||
− | Now, let <math style="vertical-align: -5px">u=\cos(x).</math> Then, <math style="vertical-align: -5px">du=-\sin(x)dx.</math> Thus, | + | Now, let <math style="vertical-align: -5px">u=\cos(x).</math> Then, <math style="vertical-align: -5px">du=-\sin(x)dx.</math> |
+ | |- | ||
+ | | Thus, | ||
|- | |- | ||
| | | | ||
− | <math>\begin{array}{rcl} | + | <math>\begin{array}{rcl} |
\displaystyle{\int \tan x~dx} & = & \displaystyle{\int \frac{-1}{u}~du}\\ | \displaystyle{\int \tan x~dx} & = & \displaystyle{\int \frac{-1}{u}~du}\\ | ||
&&\\ | &&\\ | ||
Line 44: | Line 48: | ||
|- | |- | ||
| | | | ||
− | <math style="vertical-align: -14px">\int \tan^3x~dx=\int \tan^2x\tan x ~dx.</math> | + | <math style="vertical-align: -14px">\int \tan^3x~dx=\int \tan^2x\tan x ~dx.</math> |
|- | |- | ||
|Since <math style="vertical-align: -5px">\tan^2x=\sec^2x-1,</math> we have | |Since <math style="vertical-align: -5px">\tan^2x=\sec^2x-1,</math> we have | ||
|- | |- | ||
| | | | ||
− | <math>\begin{array}{rcl} | + | <math>\begin{array}{rcl} |
\displaystyle{\int \tan^3x~dx} & = & \displaystyle{\int (\sec^2x-1)\tan x ~dx}\\ | \displaystyle{\int \tan^3x~dx} & = & \displaystyle{\int (\sec^2x-1)\tan x ~dx}\\ | ||
&&\\ | &&\\ | ||
Line 62: | Line 66: | ||
|- | |- | ||
| | | | ||
− | Let <math style="vertical-align: -5px">u=\tan(x).</math> Then, <math style="vertical-align: -1px">du=\sec^2x~dx.</math> So, we have | + | Let <math style="vertical-align: -5px">u=\tan(x).</math> |
+ | |- | ||
+ | |Then, <math style="vertical-align: -1px">du=\sec^2x~dx.</math> | ||
+ | |- | ||
+ | |So, we have | ||
|- | |- | ||
| | | | ||
− | <math>\begin{array}{rcl} | + | <math>\begin{array}{rcl} |
\displaystyle{\int \tan^3x~dx} & = & \displaystyle{\int u~du-\int \tan x~dx}\\ | \displaystyle{\int \tan^3x~dx} & = & \displaystyle{\int u~du-\int \tan x~dx}\\ | ||
&&\\ | &&\\ | ||
Line 82: | Line 90: | ||
|- | |- | ||
| | | | ||
− | <math style="vertical-align: -14px">\int \tan^3x~dx=\frac{\tan^2x}{2}-\int \frac{\sin x}{\cos x}~dx.</math> | + | <math style="vertical-align: -14px">\int \tan^3x~dx=\frac{\tan^2x}{2}-\int \frac{\sin x}{\cos x}~dx.</math> |
|- | |- | ||
− | |Now, we let <math style="vertical-align: 0px">u=\cos x.</math> Then, <math style="vertical-align: -1px">du=-\sin x~dx.</math> | + | |Now, we let <math style="vertical-align: 0px">u=\cos x.</math> |
+ | |- | ||
+ | |Then, <math style="vertical-align: -1px">du=-\sin x~dx.</math> | ||
|- | |- | ||
|Therefore, we get | |Therefore, we get | ||
|- | |- | ||
| | | | ||
− | <math>\begin{array}{rcl} | + | <math>\begin{array}{rcl} |
\displaystyle{\int \tan^3x~dx} & = & \displaystyle{\frac{\tan^2x}{2}+\int \frac{1}{u}~dx}\\ | \displaystyle{\int \tan^3x~dx} & = & \displaystyle{\frac{\tan^2x}{2}+\int \frac{1}{u}~dx}\\ | ||
&&\\ | &&\\ | ||
Line 106: | Line 116: | ||
|Solving for <math style="vertical-align: -5px">\sin^2(x),</math> we get | |Solving for <math style="vertical-align: -5px">\sin^2(x),</math> we get | ||
|- | |- | ||
− | | <math style="vertical-align: -13px">\sin^2(x)=\frac{1-\cos(2x)}{2}.</math> | + | | <math style="vertical-align: -13px">\sin^2(x)=\frac{1-\cos(2x)}{2}.</math> |
|- | |- | ||
|Plugging this identity into our integral, we get | |Plugging this identity into our integral, we get | ||
|- | |- | ||
| | | | ||
− | <math>\begin{array}{rcl} | + | <math>\begin{array}{rcl} |
\displaystyle{\int_0^\pi \sin^2x~dx} & = & \displaystyle{\int_0^\pi \frac{1-\cos(2x)}{2}~dx}\\ | \displaystyle{\int_0^\pi \sin^2x~dx} & = & \displaystyle{\int_0^\pi \frac{1-\cos(2x)}{2}~dx}\\ | ||
&&\\ | &&\\ | ||
Line 124: | Line 134: | ||
|- | |- | ||
| | | | ||
− | <math>\begin{array}{rcl} | + | <math>\begin{array}{rcl} |
\displaystyle{\int_0^\pi \sin^2x~dx} & = & \displaystyle{\left.\frac{x}{2}\right|_{0}^\pi-\int_0^\pi \frac{\cos(2x)}{2}~dx}\\ | \displaystyle{\int_0^\pi \sin^2x~dx} & = & \displaystyle{\left.\frac{x}{2}\right|_{0}^\pi-\int_0^\pi \frac{\cos(2x)}{2}~dx}\\ | ||
&&\\ | &&\\ | ||
Line 136: | Line 146: | ||
|For the remaining integral, we need to use <math style="vertical-align: 0px">u</math>-substitution. | |For the remaining integral, we need to use <math style="vertical-align: 0px">u</math>-substitution. | ||
|- | |- | ||
− | |Let <math style="vertical-align: -1px">u=2x.</math> Then, <math style="vertical-align: -1px">du=2~dx</math> and <math style="vertical-align: -18px">\frac{du}{2}=dx.</math> | + | |Let <math style="vertical-align: -1px">u=2x.</math> |
+ | |- | ||
+ | |Then, <math style="vertical-align: -1px">du=2~dx</math> and <math style="vertical-align: -18px">\frac{du}{2}=dx.</math> | ||
|- | |- | ||
|Also, since this is a definite integral and we are using <math style="vertical-align: 0px">u</math>-substitution, | |Also, since this is a definite integral and we are using <math style="vertical-align: 0px">u</math>-substitution, | ||
Line 147: | Line 159: | ||
|- | |- | ||
| | | | ||
− | <math>\begin{array}{rcl} | + | <math>\begin{array}{rcl} |
\displaystyle{\int_0^\pi \sin^2x~dx} & = & \displaystyle{\frac{\pi}{2}-\int_0^{2\pi} \frac{\cos(u)}{4}~du}\\ | \displaystyle{\int_0^\pi \sin^2x~dx} & = & \displaystyle{\frac{\pi}{2}-\int_0^{2\pi} \frac{\cos(u)}{4}~du}\\ | ||
&&\\ | &&\\ | ||
Line 162: | Line 174: | ||
!Final Answer: | !Final Answer: | ||
|- | |- | ||
− | |'''(a)''' <math>\frac{\tan^2x}{2}+\ln |\cos x|+C</math> | + | | '''(a)''' <math>\frac{\tan^2x}{2}+\ln |\cos x|+C</math> |
|- | |- | ||
− | |'''(b)''' <math>\frac{\pi}{2}</math> | + | | '''(b)''' <math>\frac{\pi}{2}</math> |
|} | |} | ||
[[009B_Sample_Midterm_3|'''<u>Return to Sample Exam</u>''']] | [[009B_Sample_Midterm_3|'''<u>Return to Sample Exam</u>''']] |
Revision as of 18:44, 7 February 2017
Evaluate the indefinite and definite integrals.
- a)
- b)
Foundations: |
---|
1. Recall the trig identity |
2. Recall the trig identity |
3. How would you integrate |
You could use -substitution. |
First, write |
Now, let Then, |
Thus, |
|
Solution:
(a)
Step 1: |
---|
We start by writing |
|
Since we have |
|
Step 2: |
---|
Now, we need to use -substitution for the first integral. |
Let |
Then, |
So, we have |
|
Step 3: |
---|
For the remaining integral, we also need to use -substitution. |
First, we write |
|
Now, we let |
Then, |
Therefore, we get |
|
(b)
Step 1: |
---|
One of the double angle formulas is |
Solving for we get |
Plugging this identity into our integral, we get |
|
Step 2: |
---|
If we integrate the first integral, we get |
|
Step 3: |
---|
For the remaining integral, we need to use -substitution. |
Let |
Then, and |
Also, since this is a definite integral and we are using -substitution, |
we need to change the bounds of integration. |
We have and |
So, the integral becomes |
|
Final Answer: |
---|
(a) |
(b) |