Difference between revisions of "009B Sample Midterm 3, Problem 3"

From Grad Wiki
Jump to navigation Jump to search
Line 11: Line 11:
 
|-
 
|-
 
|
 
|
&nbsp; &nbsp; You could use <math style="vertical-align: 0px">u</math>-substitution.  
+
&nbsp; &nbsp; &nbsp; &nbsp; You could use <math style="vertical-align: 0px">u</math>-substitution.  
 
|-
 
|-
|&nbsp; &nbsp; Let <math style="vertical-align: -3px">u=x^2+1.</math> Then, <math style="vertical-align: -1px">du=2x~dx.</math> Thus,
+
|&nbsp; &nbsp; &nbsp; &nbsp; Let <math style="vertical-align: -3px">u=x^2+1.</math>  
 +
|-
 +
|&nbsp; &nbsp; &nbsp; &nbsp; Then, <math style="vertical-align: -1px">du=2x~dx.</math>  
 +
|-
 +
|&nbsp; &nbsp; &nbsp; &nbsp; Thus,
 
|-
 
|-
 
|
 
|
&nbsp; &nbsp; <math>\begin{array}{rcl}
+
&nbsp; &nbsp;&nbsp;&nbsp; <math>\begin{array}{rcl}
 
\displaystyle{\int 2x(x^2+1)^3~dx} & = & \displaystyle{\int u^3~du}\\
 
\displaystyle{\int 2x(x^2+1)^3~dx} & = & \displaystyle{\int u^3~du}\\
 
&&\\
 
&&\\
Line 34: Line 38:
 
|We proceed using <math style="vertical-align: 0px">u</math>-substitution.  
 
|We proceed using <math style="vertical-align: 0px">u</math>-substitution.  
 
|-
 
|-
|Let <math style="vertical-align: -1px">u=x^3.</math> Then, <math style="vertical-align: -1px">du=3x^2~dx</math> and <math style="vertical-align: -14px">\frac{du}{3}=x^2~dx.</math>
+
|Let <math style="vertical-align: -1px">u=x^3.</math>  
 +
|-
 +
|Then, <math style="vertical-align: -1px">du=3x^2~dx</math> and <math style="vertical-align: -14px">\frac{du}{3}=x^2~dx.</math>
 
|-
 
|-
 
|Therefore, we have
 
|Therefore, we have
 
|-
 
|-
 
|
 
|
&nbsp; &nbsp;<math>\int x^2\sin (x^3) ~dx=\int \frac{\sin(u)}{3}~du.</math>
+
&nbsp; &nbsp; &nbsp; &nbsp;<math>\int x^2\sin (x^3) ~dx=\int \frac{\sin(u)}{3}~du.</math>
 
|}
 
|}
  
Line 48: Line 54:
 
|-
 
|-
 
|
 
|
&nbsp;&nbsp;<math>\begin{array}{rcl}
+
&nbsp; &nbsp; &nbsp; &nbsp;<math>\begin{array}{rcl}
 
\displaystyle{\int x^2\sin (x^3) ~dx} & = & \displaystyle{\frac{-1}{3}\cos(u)+C}\\
 
\displaystyle{\int x^2\sin (x^3) ~dx} & = & \displaystyle{\frac{-1}{3}\cos(u)+C}\\
 
&&\\
 
&&\\
Line 61: Line 67:
 
|We proceed using u substitution.  
 
|We proceed using u substitution.  
 
|-
 
|-
|Let <math style="vertical-align: -5px">u=\cos(x).</math> Then, <math style="vertical-align: -5px">du=-\sin(x)~dx.</math>  
+
|Let <math style="vertical-align: -5px">u=\cos(x).</math>  
 +
|-
 +
|Then, <math style="vertical-align: -5px">du=-\sin(x)~dx.</math>  
 
|-
 
|-
 
|Since this is a definite integral, we need to change the bounds of integration.  
 
|Since this is a definite integral, we need to change the bounds of integration.  
Line 74: Line 82:
 
|-
 
|-
 
|
 
|
&nbsp; &nbsp;<math>\begin{array}{rcl}
+
&nbsp; &nbsp; &nbsp; &nbsp;<math>\begin{array}{rcl}
 
\displaystyle{\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \cos^2(x)\sin (x)~dx} & = & \displaystyle{\int_{\frac{\sqrt{2}}{2}}^{\frac{\sqrt{2}}{2}} -u^2~du}\\
 
\displaystyle{\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \cos^2(x)\sin (x)~dx} & = & \displaystyle{\int_{\frac{\sqrt{2}}{2}}^{\frac{\sqrt{2}}{2}} -u^2~du}\\
 
&&\\
 
&&\\
Line 87: Line 95:
 
!Final Answer: &nbsp;  
 
!Final Answer: &nbsp;  
 
|-
 
|-
|'''(a)''' &nbsp; <math>\frac{-1}{3}\cos(x^3)+C</math>
+
|&nbsp; &nbsp; '''(a)''' &nbsp; &nbsp; <math>\frac{-1}{3}\cos(x^3)+C</math>
 
|-
 
|-
|'''(b)''' &nbsp; <math>0</math>
+
|&nbsp; &nbsp; '''(b)''' &nbsp; &nbsp; <math>0</math>
 
|}
 
|}
 
[[009B_Sample_Midterm_3|'''<u>Return to Sample Exam</u>''']]
 
[[009B_Sample_Midterm_3|'''<u>Return to Sample Exam</u>''']]

Revision as of 18:38, 7 February 2017

Compute the following integrals:

a)  
b)  


Foundations:  
How would you integrate

        You could use -substitution.

        Let
        Then,
        Thus,

     


Solution:

(a)

Step 1:  
We proceed using -substitution.
Let
Then, and
Therefore, we have

       

Step 2:  
We integrate to get

       

(b)

Step 1:  
We proceed using u substitution.
Let
Then,
Since this is a definite integral, we need to change the bounds of integration.
We have and
Step 2:  
Therefore, we get

       


Final Answer:  
    (a)    
    (b)    

Return to Sample Exam