Difference between revisions of "009B Sample Midterm 3, Problem 3"
		
		
		
		
		
		Jump to navigation
		Jump to search
		
				
		
		
	
| Kayla Murray (talk | contribs) | Kayla Murray (talk | contribs)  | ||
| Line 11: | Line 11: | ||
| |- | |- | ||
| | | | | ||
| − |     You could use <math style="vertical-align: 0px">u</math>-substitution.   | + |         You could use <math style="vertical-align: 0px">u</math>-substitution.   | 
| |- | |- | ||
| − | |    Let <math style="vertical-align: -3px">u=x^2+1.</math> Then, <math style="vertical-align: -1px">du=2x~dx.</math> Thus, | + | |        Let <math style="vertical-align: -3px">u=x^2+1.</math>   | 
| + | |- | ||
| + | |        Then, <math style="vertical-align: -1px">du=2x~dx.</math>   | ||
| + | |- | ||
| + | |        Thus, | ||
| |- | |- | ||
| | | | | ||
| − |     <math>\begin{array}{rcl} | + |       <math>\begin{array}{rcl} | 
| \displaystyle{\int 2x(x^2+1)^3~dx} & = & \displaystyle{\int u^3~du}\\ | \displaystyle{\int 2x(x^2+1)^3~dx} & = & \displaystyle{\int u^3~du}\\ | ||
| &&\\ | &&\\ | ||
| Line 34: | Line 38: | ||
| |We proceed using <math style="vertical-align: 0px">u</math>-substitution.   | |We proceed using <math style="vertical-align: 0px">u</math>-substitution.   | ||
| |- | |- | ||
| − | |Let <math style="vertical-align: -1px">u=x^3.</math> Then, <math style="vertical-align: -1px">du=3x^2~dx</math> and <math style="vertical-align: -14px">\frac{du}{3}=x^2~dx.</math> | + | |Let <math style="vertical-align: -1px">u=x^3.</math>   | 
| + | |- | ||
| + | |Then, <math style="vertical-align: -1px">du=3x^2~dx</math> and <math style="vertical-align: -14px">\frac{du}{3}=x^2~dx.</math> | ||
| |- | |- | ||
| |Therefore, we have | |Therefore, we have | ||
| |- | |- | ||
| | | | | ||
| − |    <math>\int x^2\sin (x^3) ~dx=\int \frac{\sin(u)}{3}~du.</math> | + |        <math>\int x^2\sin (x^3) ~dx=\int \frac{\sin(u)}{3}~du.</math> | 
| |} | |} | ||
| Line 48: | Line 54: | ||
| |- | |- | ||
| | | | | ||
| − |   <math>\begin{array}{rcl} | + |        <math>\begin{array}{rcl} | 
| \displaystyle{\int x^2\sin (x^3) ~dx} & = & \displaystyle{\frac{-1}{3}\cos(u)+C}\\ | \displaystyle{\int x^2\sin (x^3) ~dx} & = & \displaystyle{\frac{-1}{3}\cos(u)+C}\\ | ||
| &&\\ | &&\\ | ||
| Line 61: | Line 67: | ||
| |We proceed using u substitution.   | |We proceed using u substitution.   | ||
| |- | |- | ||
| − | |Let <math style="vertical-align: -5px">u=\cos(x).</math> Then, <math style="vertical-align: -5px">du=-\sin(x)~dx.</math>   | + | |Let <math style="vertical-align: -5px">u=\cos(x).</math>   | 
| + | |- | ||
| + | |Then, <math style="vertical-align: -5px">du=-\sin(x)~dx.</math>   | ||
| |- | |- | ||
| |Since this is a definite integral, we need to change the bounds of integration.   | |Since this is a definite integral, we need to change the bounds of integration.   | ||
| Line 74: | Line 82: | ||
| |- | |- | ||
| | | | | ||
| − |    <math>\begin{array}{rcl} | + |        <math>\begin{array}{rcl} | 
| \displaystyle{\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \cos^2(x)\sin (x)~dx} & = & \displaystyle{\int_{\frac{\sqrt{2}}{2}}^{\frac{\sqrt{2}}{2}} -u^2~du}\\ | \displaystyle{\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \cos^2(x)\sin (x)~dx} & = & \displaystyle{\int_{\frac{\sqrt{2}}{2}}^{\frac{\sqrt{2}}{2}} -u^2~du}\\ | ||
| &&\\ | &&\\ | ||
| Line 87: | Line 95: | ||
| !Final Answer:     | !Final Answer:     | ||
| |- | |- | ||
| − | |'''(a)'''   <math>\frac{-1}{3}\cos(x^3)+C</math> | + | |    '''(a)'''     <math>\frac{-1}{3}\cos(x^3)+C</math> | 
| |- | |- | ||
| − | |'''(b)'''   <math>0</math> | + | |    '''(b)'''     <math>0</math> | 
| |} | |} | ||
| [[009B_Sample_Midterm_3|'''<u>Return to Sample Exam</u>''']] | [[009B_Sample_Midterm_3|'''<u>Return to Sample Exam</u>''']] | ||
Revision as of 18:38, 7 February 2017
Compute the following integrals:
- a)
- b)
 
| Foundations: | 
|---|
| How would you integrate | 
| You could use -substitution. | 
| Let | 
| Then, | 
| Thus, | 
| 
 | 
Solution:
(a)
| Step 1: | 
|---|
| We proceed using -substitution. | 
| Let | 
| Then, and | 
| Therefore, we have | 
| 
 | 
| Step 2: | 
|---|
| We integrate to get | 
| 
 | 
(b)
| Step 1: | 
|---|
| We proceed using u substitution. | 
| Let | 
| Then, | 
| Since this is a definite integral, we need to change the bounds of integration. | 
| We have and | 
| Step 2: | 
|---|
| Therefore, we get | 
| 
 | 
| Final Answer: | 
|---|
| (a) | 
| (b) |