Difference between revisions of "009B Sample Midterm 3, Problem 1"

From Grad Wiki
Jump to navigation Jump to search
Line 4: Line 4:
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Foundations:    
 
!Foundations:    
|-
 
||Recall:
 
 
|-
 
|-
 
|
 
|
 
'''1.''' The height of each rectangle in the right-hand Riemann sum  
 
'''1.''' The height of each rectangle in the right-hand Riemann sum  
 
|-
 
|-
|    is given by choosing the right endpoint of the interval.
+
|        is given by choosing the right endpoint of the interval.
 
|-
 
|-
 
|
 
|
Line 28: Line 26:
 
|-
 
|-
 
|
 
|
&nbsp; &nbsp;<math>\frac{\pi}{4}\bigg(f\bigg(\frac{\pi}{4}\bigg)+f\bigg(\frac{\pi}{2}\bigg)+f\bigg(\frac{3\pi}{4}\bigg)+f(\pi)\bigg).</math>
+
&nbsp; &nbsp; &nbsp; &nbsp; <math>\frac{\pi}{4}\bigg(f\bigg(\frac{\pi}{4}\bigg)+f\bigg(\frac{\pi}{2}\bigg)+f\bigg(\frac{3\pi}{4}\bigg)+f(\pi)\bigg).</math>
 
|}
 
|}
  
Line 37: Line 35:
 
|-
 
|-
 
|
 
|
&nbsp; &nbsp;<math>\begin{array}{rcl}
+
&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 
\displaystyle{\frac{\pi}{4}\bigg(\sin\bigg(\frac{\pi}{4}\bigg)+\sin\bigg(\frac{\pi}{2}\bigg)+\sin\bigg(\frac{3\pi}{4}\bigg)+\sin(\pi)\bigg)} & = & \displaystyle{\frac{\pi}{4}\bigg(\frac{\sqrt{2}}{2}+1+\frac{\sqrt{2}}{2}+0\bigg)}\\
 
\displaystyle{\frac{\pi}{4}\bigg(\sin\bigg(\frac{\pi}{4}\bigg)+\sin\bigg(\frac{\pi}{2}\bigg)+\sin\bigg(\frac{3\pi}{4}\bigg)+\sin(\pi)\bigg)} & = & \displaystyle{\frac{\pi}{4}\bigg(\frac{\sqrt{2}}{2}+1+\frac{\sqrt{2}}{2}+0\bigg)}\\
 
&&\\
 
&&\\
Line 48: Line 46:
 
!Final Answer: &nbsp;  
 
!Final Answer: &nbsp;  
 
|-
 
|-
|&nbsp;&nbsp; <math>\frac{\pi}{4}(\sqrt{2}+1)</math>
+
|&nbsp;&nbsp; &nbsp; &nbsp; <math>\frac{\pi}{4}(\sqrt{2}+1)</math>
 
|}
 
|}
 
[[009B_Sample_Midterm_3|'''<u>Return to Sample Exam</u>''']]
 
[[009B_Sample_Midterm_3|'''<u>Return to Sample Exam</u>''']]

Revision as of 18:29, 7 February 2017

Divide the interval into four subintervals of equal length and compute the right-endpoint Riemann sum of


Foundations:  

1. The height of each rectangle in the right-hand Riemann sum

        is given by choosing the right endpoint of the interval.

2. See the Riemann sums (insert link) for more information.


Solution:

Step 1:  
Let
Each interval has length
Therefore, the right-endpoint Riemann sum of on the interval is

       

Step 2:  
Thus, the right-endpoint Riemann sum is

       


Final Answer:  
      

Return to Sample Exam