Difference between revisions of "009B Sample Midterm 2, Problem 5"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
Line 7: | Line 7: | ||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
!Foundations: | !Foundations: | ||
− | |||
− | |||
|- | |- | ||
|'''1.''' Recall the trig identity | |'''1.''' Recall the trig identity | ||
|- | |- | ||
− | | <math style="vertical-align: -1px">\sec^2x=\tan^2x+1</math> | + | | <math style="vertical-align: -1px">\sec^2x=\tan^2x+1</math> |
|- | |- | ||
|'''2.''' Also, | |'''2.''' Also, | ||
|- | |- | ||
− | | <math style="vertical-align: -13px">\int \sec^2 x~dx=\tan x+C</math> | + | | <math style="vertical-align: -13px">\int \sec^2 x~dx=\tan x+C</math> |
|- | |- | ||
|'''3.''' How would you integrate <math style="vertical-align: -12px">\int \sec^2(x)\tan(x)~dx?</math> | |'''3.''' How would you integrate <math style="vertical-align: -12px">\int \sec^2(x)\tan(x)~dx?</math> | ||
|- | |- | ||
| | | | ||
− | You could use <math style="vertical-align: 0px">u</math>-substitution. Let <math style="vertical-align: -2px">u=\tan x.</math> Then, <math style="vertical-align: -5px">du=\sec^2(x)dx.</math> | + | You could use <math style="vertical-align: 0px">u</math>-substitution. |
+ | |- | ||
+ | | Let <math style="vertical-align: -2px">u=\tan x.</math> | ||
+ | |- | ||
+ | | Then, <math style="vertical-align: -5px">du=\sec^2(x)dx.</math> | ||
|- | |- | ||
| | | | ||
− | Thus, <math style="vertical-align: -15px">\int \sec^2(x)\tan(x)~dx=\int u~du=\frac{u^2}{2}+C=\frac{\tan^2x}{2}+C.</math> | + | Thus, <math style="vertical-align: -15px">\int \sec^2(x)\tan(x)~dx=\int u~du=\frac{u^2}{2}+C=\frac{\tan^2x}{2}+C.</math> |
|} | |} | ||
Revision as of 17:30, 7 February 2017
Evaluate the integral:
Foundations: |
---|
1. Recall the trig identity |
2. Also, |
3. How would you integrate |
You could use -substitution. |
Let |
Then, |
Thus, |
Solution:
Step 1: |
---|
First, we write |
Using the trig identity |
we have |
Plugging in the last identity into one of the we get |
|
by using the identity again on the last equality. |
Step 2: |
---|
So, we have |
For the first integral, we need to use -substitution. |
Let |
Then, |
So, we have |
Step 3: |
---|
We integrate to get |
|
Final Answer: |
---|