Difference between revisions of "009B Sample Midterm 2, Problem 1"

From Grad Wiki
Jump to navigation Jump to search
Line 14: Line 14:
 
|-
 
|-
 
|
 
|
    Part 1 of the Fundamental Theorem of Calculus says that  
+
        Part 1 of the Fundamental Theorem of Calculus says that  
 
|-
 
|-
|&nbsp; &nbsp; <math style="vertical-align: -15px">\frac{d}{dx}\int_0^x\sin(t)~dt=\sin(x).</math>
+
|&nbsp; &nbsp; &nbsp; &nbsp; <math style="vertical-align: -15px">\frac{d}{dx}\int_0^x\sin(t)~dt=\sin(x).</math>
 
|-
 
|-
 
|'''2.''' What does Part 2 of the Fundamental Theorem of Calculus say about <math style="vertical-align: -15px">\int_a^b\sec^2x~dx</math> where <math style="vertical-align: -5px">a,b</math> are constants?
 
|'''2.''' What does Part 2 of the Fundamental Theorem of Calculus say about <math style="vertical-align: -15px">\int_a^b\sec^2x~dx</math> where <math style="vertical-align: -5px">a,b</math> are constants?
 
|-
 
|-
 
|
 
|
&nbsp; &nbsp; Part 2 of the Fundamental Theorem of Calculus says that  
+
&nbsp; &nbsp; &nbsp; &nbsp; Part 2 of the Fundamental Theorem of Calculus says that  
 
|-
 
|-
|&nbsp; &nbsp; <math style="vertical-align: -15px">\int_a^b\sec^2x~dx=F(b)-F(a)</math> where <math style="vertical-align: 0px">F</math> is any antiderivative of <math style="vertical-align: 0px">\sec^2x.</math>
+
|&nbsp; &nbsp; &nbsp; &nbsp; <math style="vertical-align: -15px">\int_a^b\sec^2x~dx=F(b)-F(a)</math> where <math style="vertical-align: 0px">F</math> is any antiderivative of <math style="vertical-align: 0px">\sec^2x.</math>
 
|}
 
|}
  
Line 52: Line 52:
 
|Then,
 
|Then,
 
|-
 
|-
|&nbsp; &nbsp; <math style="vertical-align: -14px">\int_a^b f(x)~dx=F(b)-F(a).</math>
+
|&nbsp; &nbsp; &nbsp; &nbsp; <math style="vertical-align: -14px">\int_a^b f(x)~dx=F(b)-F(a).</math>
 
|}
 
|}
  
Line 68: Line 68:
 
|Then,  
 
|Then,  
 
|-
 
|-
|&nbsp; &nbsp; <math style="vertical-align: -5px">F(x)=G(g(x)).</math>
+
|&nbsp; &nbsp; &nbsp; &nbsp; <math style="vertical-align: -5px">F(x)=G(g(x)).</math>
 
|}
 
|}
  
Line 88: Line 88:
 
|Since  
 
|Since  
 
|-
 
|-
|&nbsp; &nbsp;<math style="vertical-align: -4px">G'(g(x))=\sin(g(x))=\sin(\cos(x)),</math>
+
|&nbsp; &nbsp; &nbsp; &nbsp; <math style="vertical-align: -4px">G'(g(x))=\sin(g(x))=\sin(\cos(x)),</math>
 
|-
 
|-
 
|we have  
 
|we have  
 
|-
 
|-
|&nbsp; &nbsp;<math style="vertical-align: -5px">F'(x)=G'(g(x))\cdot g'(x)=\sin(\cos(x))\cdot(-\sin(x)).</math>
+
|&nbsp; &nbsp; &nbsp; &nbsp; <math style="vertical-align: -5px">F'(x)=G'(g(x))\cdot g'(x)=\sin(\cos(x))\cdot(-\sin(x)).</math>
 
|}
 
|}
  
Line 102: Line 102:
 
| Using the '''Fundamental Theorem of Calculus, Part 2''', we have
 
| Using the '''Fundamental Theorem of Calculus, Part 2''', we have
 
|-
 
|-
| &nbsp;&nbsp; <math>\int_{0}^{\frac{\pi}{4}}\sec^2 x~dx=\tan(x)\biggr|_{0}^{\pi/4}.</math>
+
| &nbsp; &nbsp; &nbsp; &nbsp; <math>\int_{0}^{\frac{\pi}{4}}\sec^2 x~dx=\tan(x)\biggr|_{0}^{\pi/4}.</math>
 
|}
 
|}
  
Line 110: Line 110:
 
|So, we get  
 
|So, we get  
 
|-
 
|-
| &nbsp;&nbsp; <math style="vertical-align: -16px">\int_{0}^{\frac{\pi}{4}}\sec^2 x~dx=\tan \bigg(\frac{\pi}{4}\bigg)-\tan (0)=1.</math>
+
| &nbsp; &nbsp; &nbsp; &nbsp; <math style="vertical-align: -16px">\int_{0}^{\frac{\pi}{4}}\sec^2 x~dx=\tan \bigg(\frac{\pi}{4}\bigg)-\tan (0)=1.</math>
 
|}
 
|}
  
Line 117: Line 117:
 
!Final Answer: &nbsp;  
 
!Final Answer: &nbsp;  
 
|-
 
|-
|'''(a)'''
+
|&nbsp; &nbsp; '''(a)''' &nbsp; &nbsp;
 
|-
 
|-
|'''The Fundamental Theorem of Calculus, Part 1'''
+
|&nbsp; &nbsp; '''The Fundamental Theorem of Calculus, Part 1'''
 
|-
 
|-
|Let <math style="vertical-align: -4px">f</math> be continuous on <math style="vertical-align: -5px">[a,b]</math> and let <math style="vertical-align: -14px">F(x)=\int_a^x f(t)~dt.</math>
+
|&nbsp; &nbsp; Let <math style="vertical-align: -4px">f</math> be continuous on <math style="vertical-align: -5px">[a,b]</math> and let <math style="vertical-align: -14px">F(x)=\int_a^x f(t)~dt.</math>
 
|-
 
|-
|Then, <math style="vertical-align: 0px">F</math> is a differentiable function on <math style="vertical-align: -5px">(a,b)</math> and <math style="vertical-align: -5px">F'(x)=f(x).</math>
+
|&nbsp; &nbsp; Then, <math style="vertical-align: 0px">F</math> is a differentiable function on <math style="vertical-align: -5px">(a,b)</math> and <math style="vertical-align: -5px">F'(x)=f(x).</math>
 
|-
 
|-
|'''The Fundamental Theorem of Calculus, Part 2'''
+
|&nbsp; &nbsp;'''The Fundamental Theorem of Calculus, Part 2'''
 
|-
 
|-
|Let <math style="vertical-align: -4px">f</math> be continuous on <math style="vertical-align: -5px">[a,b]</math> and let <math style="vertical-align: 0px">F</math> be any antiderivative of <math style="vertical-align: -4px">f.</math>
+
|&nbsp; &nbsp; Let <math style="vertical-align: -4px">f</math> be continuous on <math style="vertical-align: -5px">[a,b]</math> and let <math style="vertical-align: 0px">F</math> be any antiderivative of <math style="vertical-align: -4px">f.</math>
 
|-
 
|-
|Then, <math style="vertical-align: -14px">\int_a^b f(x)~dx=F(b)-F(a).</math>
+
|&nbsp; Then, <math style="vertical-align: -14px">\int_a^b f(x)~dx=F(b)-F(a).</math>
 
|-
 
|-
|'''(b)''' &nbsp; <math style="vertical-align: -15px">\frac{d}{dx}\int_0^{\cos (x)}\sin (t)~dt\,=\,\sin(\cos(x))\cdot(-\sin(x)).</math>
+
|&nbsp; &nbsp; '''(b)''' &nbsp; &nbsp; <math style="vertical-align: -15px">\frac{d}{dx}\int_0^{\cos (x)}\sin (t)~dt\,=\,\sin(\cos(x))\cdot(-\sin(x)).</math>
 
|-
 
|-
|'''(c)''' &nbsp; <math style="vertical-align: -14px">\int_{0}^{\pi/4}\sec^2 x~dx\,=\,1.</math>
+
|&nbsp; &nbsp; '''(c)''' &nbsp; &nbsp; <math style="vertical-align: -14px">\int_{0}^{\pi/4}\sec^2 x~dx\,=\,1.</math>
 
|}
 
|}
 
[[009B_Sample_Midterm_2|'''<u>Return to Sample Exam</u>''']]
 
[[009B_Sample_Midterm_2|'''<u>Return to Sample Exam</u>''']]

Revision as of 19:02, 7 February 2017

This problem has three parts:

a) State the Fundamental Theorem of Calculus.
b) Compute  
c) Evaluate


Foundations:  
1. What does Part 1 of the Fundamental Theorem of Calculus say about

        Part 1 of the Fundamental Theorem of Calculus says that

       
2. What does Part 2 of the Fundamental Theorem of Calculus say about where are constants?

        Part 2 of the Fundamental Theorem of Calculus says that

        where is any antiderivative of


Solution:

(a)

Step 1:  
The Fundamental Theorem of Calculus has two parts.
The Fundamental Theorem of Calculus, Part 1
Let be continuous on and let
Then, is a differentiable function on and
Step 2:  
The Fundamental Theorem of Calculus, Part 2
Let be continuous on and let be any antiderivative of
Then,
       

(b)

Step 1:  
Let
The problem is asking us to find
Let and
Then,
       
Step 2:  
If we take the derivative of both sides of the last equation,
we get by the Chain Rule.
Step 3:  
Now, and
by the Fundamental Theorem of Calculus, Part 1.
Since
       
we have
       

(c)

Step 1:  
Using the Fundamental Theorem of Calculus, Part 2, we have
       
Step 2:  
So, we get
       


Final Answer:  
    (a)    
    The Fundamental Theorem of Calculus, Part 1
    Let be continuous on and let
    Then, is a differentiable function on and
   The Fundamental Theorem of Calculus, Part 2
    Let be continuous on and let be any antiderivative of
  Then,
    (b)    
    (c)    

Return to Sample Exam