Difference between revisions of "009B Sample Midterm 1, Problem 5"

From Grad Wiki
Jump to navigation Jump to search
Line 27: Line 27:
 
|So, the left-hand Riemann sum is  
 
|So, the left-hand Riemann sum is  
 
|-
 
|-
| &nbsp;&nbsp; <math style="vertical-align: 0px">1(f(0)+f(1)+f(2)).</math>
+
| &nbsp;&nbsp; &nbsp; &nbsp; <math style="vertical-align: 0px">1(f(0)+f(1)+f(2)).</math>
 
|}
 
|}
  
Line 35: Line 35:
 
|Thus, the left-hand Riemann sum is  
 
|Thus, the left-hand Riemann sum is  
 
|-
 
|-
| &nbsp;&nbsp; <math style="vertical-align: -4px">1(f(0)+f(1)+f(2))=1+0+-3=-2.</math>   
+
| &nbsp;&nbsp; &nbsp; &nbsp; <math style="vertical-align: -4px">1(f(0)+f(1)+f(2))=1+0+-3=-2.</math>   
 
|}
 
|}
  
Line 46: Line 46:
 
|So, the right-hand Riemann sum is
 
|So, the right-hand Riemann sum is
 
|-
 
|-
| &nbsp;&nbsp; <math style="vertical-align: -5px">1(f(1)+f(2)+f(3)).</math>  
+
| &nbsp;&nbsp; &nbsp; &nbsp; <math style="vertical-align: -5px">1(f(1)+f(2)+f(3)).</math>  
 
|}
 
|}
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
Line 53: Line 53:
 
|Thus, the right-hand Riemann sum is  
 
|Thus, the right-hand Riemann sum is  
 
|-
 
|-
| &nbsp;&nbsp; <math style="vertical-align: -5px">1(f(1)+f(2)+f(3))=0+-3+-8=-11.</math>   
+
| &nbsp;&nbsp; &nbsp; &nbsp; <math style="vertical-align: -5px">1(f(1)+f(2)+f(3))=0+-3+-8=-11.</math>   
 
|}
 
|}
  
Line 64: Line 64:
 
|The width of each rectangle is  
 
|The width of each rectangle is  
 
|-
 
|-
| &nbsp; &nbsp; <math style="vertical-align: -13px">\Delta x=\frac{3-0}{n}=\frac{3}{n}.</math>
+
| &nbsp; &nbsp; &nbsp; &nbsp; <math style="vertical-align: -13px">\Delta x=\frac{3-0}{n}=\frac{3}{n}.</math>
 
|}
 
|}
  
Line 72: Line 72:
 
|So, the right-hand Riemann sum is  
 
|So, the right-hand Riemann sum is  
 
|-
 
|-
| &nbsp;&nbsp; <math style="vertical-align: -14px">\Delta x \bigg(f\bigg(1\cdot \frac{3}{n}\bigg)+f\bigg(2\cdot \frac{3}{n}\bigg)+f\bigg(3\cdot \frac{3}{n}\bigg)+\ldots +f(3)\bigg).</math>
+
| &nbsp;&nbsp; &nbsp; &nbsp; <math style="vertical-align: -14px">\Delta x \bigg(f\bigg(1\cdot \frac{3}{n}\bigg)+f\bigg(2\cdot \frac{3}{n}\bigg)+f\bigg(3\cdot \frac{3}{n}\bigg)+\ldots +f(3)\bigg).</math>
 
|-
 
|-
 
|Finally, we let <math style="vertical-align: 0px">n</math> go to infinity to get a limit.   
 
|Finally, we let <math style="vertical-align: 0px">n</math> go to infinity to get a limit.   
Line 83: Line 83:
 
!Final Answer: &nbsp;  
 
!Final Answer: &nbsp;  
 
|-
 
|-
|'''(a)''' &nbsp;<math style="vertical-align: -2px">-2</math>  
+
|&nbsp; &nbsp; '''(a)''' &nbsp; &nbsp; <math style="vertical-align: -2px">-2</math>  
 
|-
 
|-
|'''(b)''' &nbsp;<math style="vertical-align: -2px">-11</math>
+
|&nbsp; &nbsp; '''(b)''' &nbsp; &nbsp; <math style="vertical-align: -2px">-11</math>
 
|-
 
|-
|'''(c)''' &nbsp;<math style="vertical-align: -22px">\lim_{n\to\infty} \frac{3}{n}\sum_{i=1}^{n}f\bigg(i\frac{3}{n}\bigg)</math>
+
|&nbsp; &nbsp; '''(c)''' &nbsp; &nbsp; <math style="vertical-align: -22px">\lim_{n\to\infty} \frac{3}{n}\sum_{i=1}^{n}f\bigg(i\frac{3}{n}\bigg)</math>
 
|}
 
|}
 
[[009B_Sample_Midterm_1|'''<u>Return to Sample Exam</u>''']]
 
[[009B_Sample_Midterm_1|'''<u>Return to Sample Exam</u>''']]

Revision as of 17:09, 7 February 2017

Let .

a) Compute the left-hand Riemann sum approximation of with boxes.
b) Compute the right-hand Riemann sum approximation of with boxes.
c) Express as a limit of right-hand Riemann sums (as in the definition of the definite integral). Do not evaluate the limit.


Foundations:  
1. The height of each rectangle in the left-hand Riemann sum is given by choosing the left endpoint of the interval.
2. The height of each rectangle in the right-hand Riemann sum is given by choosing the right endpoint of the interval.
3. See the Riemann sums (insert link) for more information.


Solution:

(a)

Step 1:  
Since our interval is and we are using 3 rectangles, each rectangle has width 1.
So, the left-hand Riemann sum is
      
Step 2:  
Thus, the left-hand Riemann sum is
      

(b)

Step 1:  
Since our interval is and we are using 3 rectangles, each rectangle has width 1.
So, the right-hand Riemann sum is
      
Step 2:  
Thus, the right-hand Riemann sum is
      

(c)

Step 1:  
Let be the number of rectangles used in the right-hand Riemann sum for
The width of each rectangle is
       
Step 2:  
So, the right-hand Riemann sum is
      
Finally, we let go to infinity to get a limit.
Thus, is equal to


Final Answer:  
    (a)    
    (b)    
    (c)    

Return to Sample Exam