Difference between revisions of "009B Sample Midterm 1, Problem 2"

From Grad Wiki
Jump to navigation Jump to search
Line 15: Line 15:
 
|The average value of a function <math style="vertical-align: -5px">f(x)</math> on an interval <math style="vertical-align: -5px">[a,b]</math> is given by  
 
|The average value of a function <math style="vertical-align: -5px">f(x)</math> on an interval <math style="vertical-align: -5px">[a,b]</math> is given by  
 
|-
 
|-
|&nbsp; &nbsp; <math style="vertical-align: -18px">f_{\text{avg}}=\frac{1}{b-a}\int_a^b f(x)~dx.</math>
+
|&nbsp; &nbsp; &nbsp; &nbsp; <math style="vertical-align: -18px">f_{\text{avg}}=\frac{1}{b-a}\int_a^b f(x)~dx.</math>
 
|}
 
|}
  
Line 25: Line 25:
 
|This problem wants us to find the average value of <math style="vertical-align: -5px">s(t)</math> over the interval <math style="vertical-align: -5px">[0,5].</math>
 
|This problem wants us to find the average value of <math style="vertical-align: -5px">s(t)</math> over the interval <math style="vertical-align: -5px">[0,5].</math>
 
|-
 
|-
|Using the formula given in Foundations, we have:
+
|Using the average value formula, we have
 
|-
 
|-
| &nbsp; &nbsp;<math style="vertical-align: 0px">s_{\text{avg}}=\frac{1}{5-0} \int_0^5 t(25-5t)+18~dt.</math>  
+
| &nbsp; &nbsp; &nbsp; &nbsp; <math style="vertical-align: 0px">s_{\text{avg}}=\frac{1}{5-0} \int_0^5 t(25-5t)+18~dt.</math>  
 
|}
 
|}
  
Line 35: Line 35:
 
|First, we distribute to get  
 
|First, we distribute to get  
 
|-
 
|-
|&nbsp; &nbsp; <math>s_{\text{avg}}=\frac{1}{5} \int_0^5 25t-t^2+18~dt.</math>
+
|&nbsp; &nbsp; &nbsp; &nbsp; <math>s_{\text{avg}}=\frac{1}{5} \int_0^5 25t-t^2+18~dt.</math>
 
|-
 
|-
 
|Then, we integrate to get
 
|Then, we integrate to get
 
|-
 
|-
|&nbsp; &nbsp; <math>s_{\text{avg}}=\left. \frac{1}{5}\bigg[\frac{25t^2}{2}-\frac{5t^3}{3}+18t\bigg]\right|_0^5.</math>
+
|&nbsp; &nbsp; &nbsp; &nbsp; <math>s_{\text{avg}}=\left. \frac{1}{5}\bigg[\frac{25t^2}{2}-\frac{5t^3}{3}+18t\bigg]\right|_0^5.</math>
 
|}
 
|}
  
Line 47: Line 47:
 
|We now evaluate to get  
 
|We now evaluate to get  
 
|-
 
|-
|&nbsp; &nbsp; <math>\begin{array}{rcl}
+
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 
\displaystyle{s_{\text{avg}}} & = & \displaystyle{\frac{1}{5}\bigg[\frac{25(5)^2}{2}-\frac{5(5)^3}{3}+18(5)\bigg]-0}\\
 
\displaystyle{s_{\text{avg}}} & = & \displaystyle{\frac{1}{5}\bigg[\frac{25(5)^2}{2}-\frac{5(5)^3}{3}+18(5)\bigg]-0}\\
 
&&\\
 
&&\\
Line 59: Line 59:
 
!Final Answer: &nbsp;  
 
!Final Answer: &nbsp;  
 
|-
 
|-
| &nbsp; &nbsp; <math>\frac{233}{6}</math>
+
| &nbsp; &nbsp; &nbsp; &nbsp; <math>\frac{233}{6}</math>
 
|-
 
|-
 
|  
 
|  
 
|}
 
|}
 
[[009B_Sample_Midterm_1|'''<u>Return to Sample Exam</u>''']]
 
[[009B_Sample_Midterm_1|'''<u>Return to Sample Exam</u>''']]

Revision as of 16:36, 7 February 2017

Otis Taylor plots the price per share of a stock that he owns as a function of time

and finds that it can be approximated by the function

where is the time (in years) since the stock was purchased.

Find the average price of the stock over the first five years.


Foundations:  
The average value of a function on an interval is given by
       


Solution:

Step 1:  
This problem wants us to find the average value of over the interval
Using the average value formula, we have
       
Step 2:  
First, we distribute to get
       
Then, we integrate to get
       
Step 3:  
We now evaluate to get
       


Final Answer:  
       

Return to Sample Exam