Difference between revisions of "009B Sample Midterm 1, Problem 2"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
Line 15: | Line 15: | ||
|The average value of a function <math style="vertical-align: -5px">f(x)</math> on an interval <math style="vertical-align: -5px">[a,b]</math> is given by | |The average value of a function <math style="vertical-align: -5px">f(x)</math> on an interval <math style="vertical-align: -5px">[a,b]</math> is given by | ||
|- | |- | ||
− | | <math style="vertical-align: -18px">f_{\text{avg}}=\frac{1}{b-a}\int_a^b f(x)~dx.</math> | + | | <math style="vertical-align: -18px">f_{\text{avg}}=\frac{1}{b-a}\int_a^b f(x)~dx.</math> |
|} | |} | ||
Line 25: | Line 25: | ||
|This problem wants us to find the average value of <math style="vertical-align: -5px">s(t)</math> over the interval <math style="vertical-align: -5px">[0,5].</math> | |This problem wants us to find the average value of <math style="vertical-align: -5px">s(t)</math> over the interval <math style="vertical-align: -5px">[0,5].</math> | ||
|- | |- | ||
− | |Using the formula | + | |Using the average value formula, we have |
|- | |- | ||
− | | <math style="vertical-align: 0px">s_{\text{avg}}=\frac{1}{5-0} \int_0^5 t(25-5t)+18~dt.</math> | + | | <math style="vertical-align: 0px">s_{\text{avg}}=\frac{1}{5-0} \int_0^5 t(25-5t)+18~dt.</math> |
|} | |} | ||
Line 35: | Line 35: | ||
|First, we distribute to get | |First, we distribute to get | ||
|- | |- | ||
− | | <math>s_{\text{avg}}=\frac{1}{5} \int_0^5 25t-t^2+18~dt.</math> | + | | <math>s_{\text{avg}}=\frac{1}{5} \int_0^5 25t-t^2+18~dt.</math> |
|- | |- | ||
|Then, we integrate to get | |Then, we integrate to get | ||
|- | |- | ||
− | | <math>s_{\text{avg}}=\left. \frac{1}{5}\bigg[\frac{25t^2}{2}-\frac{5t^3}{3}+18t\bigg]\right|_0^5.</math> | + | | <math>s_{\text{avg}}=\left. \frac{1}{5}\bigg[\frac{25t^2}{2}-\frac{5t^3}{3}+18t\bigg]\right|_0^5.</math> |
|} | |} | ||
Line 47: | Line 47: | ||
|We now evaluate to get | |We now evaluate to get | ||
|- | |- | ||
− | | <math>\begin{array}{rcl} | + | | <math>\begin{array}{rcl} |
\displaystyle{s_{\text{avg}}} & = & \displaystyle{\frac{1}{5}\bigg[\frac{25(5)^2}{2}-\frac{5(5)^3}{3}+18(5)\bigg]-0}\\ | \displaystyle{s_{\text{avg}}} & = & \displaystyle{\frac{1}{5}\bigg[\frac{25(5)^2}{2}-\frac{5(5)^3}{3}+18(5)\bigg]-0}\\ | ||
&&\\ | &&\\ | ||
Line 59: | Line 59: | ||
!Final Answer: | !Final Answer: | ||
|- | |- | ||
− | | <math>\frac{233}{6}</math> | + | | <math>\frac{233}{6}</math> |
|- | |- | ||
| | | | ||
|} | |} | ||
[[009B_Sample_Midterm_1|'''<u>Return to Sample Exam</u>''']] | [[009B_Sample_Midterm_1|'''<u>Return to Sample Exam</u>''']] |
Revision as of 16:36, 7 February 2017
Otis Taylor plots the price per share of a stock that he owns as a function of time
and finds that it can be approximated by the function
where is the time (in years) since the stock was purchased.
Find the average price of the stock over the first five years.
Foundations: |
---|
The average value of a function on an interval is given by |
Solution:
Step 1: |
---|
This problem wants us to find the average value of over the interval |
Using the average value formula, we have |
Step 2: |
---|
First, we distribute to get |
Then, we integrate to get |
Step 3: |
---|
We now evaluate to get |
Final Answer: |
---|