Difference between revisions of "009B Sample Midterm 1, Problem 1"

From Grad Wiki
Jump to navigation Jump to search
Line 11: Line 11:
 
|-
 
|-
 
|
 
|
&nbsp; &nbsp; You could use <math style="vertical-align: 0px">u</math>-substitution. Let <math style="vertical-align: -5px">u=\ln(x).</math> Then, <math style="vertical-align: -13px">du=\frac{1}{x}dx.</math>
+
&nbsp; &nbsp; &nbsp; &nbsp; You could use <math style="vertical-align: 0px">u</math>-substitution.  
 +
|-
 +
|&nbsp; &nbsp; &nbsp; &nbsp; Let <math style="vertical-align: -5px">u=\ln(x).</math>
 +
|-
 +
|&nbsp; &nbsp; &nbsp; &nbsp; Then, <math style="vertical-align: -13px">du=\frac{1}{x}dx.</math>
 
|-
 
|-
 
|
 
|
&nbsp; &nbsp; Thus, <math style="vertical-align: -12px">\int \frac{\ln x}{x}~dx=\int u~du=\frac{u^2}{2}+C=\frac{(\ln x)^2}{2}+C.</math>
+
&nbsp; &nbsp; &nbsp; &nbsp; Thus,  
 +
|-
 +
|
 +
&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 +
\displaystyle{\int \frac{\ln x}{x}~dx} & = & \displaystyle{\int u~du}\\
 +
&&\\
 +
& = & \displaystyle{\frac{u^2}{2}+C}\\
 +
&&\\
 +
& = & \displaystyle{\frac{(\ln x)^2}{2}+C.}
 +
\end{array}</math>
 
|}
 
|}
  
Line 30: Line 43:
 
|Therefore, the integral becomes  
 
|Therefore, the integral becomes  
 
|-
 
|-
|&nbsp; &nbsp; <math style="vertical-align: -13px">\frac{1}{3}\int \sqrt{u}~du.</math>
+
|&nbsp; &nbsp; &nbsp; &nbsp; <math style="vertical-align: -13px">\frac{1}{3}\int \sqrt{u}~du.</math>
 
|}
 
|}
  
Line 36: Line 49:
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 
|-
 
|-
|We now have:
+
|We now have
 
|-
 
|-
|&nbsp; &nbsp; <math>\begin{array}{rcl}
+
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 
\displaystyle{\int x^2\sqrt{1+x^3}~dx} & = & \displaystyle{\frac{1}{3}\int \sqrt{u}~du}\\
 
\displaystyle{\int x^2\sqrt{1+x^3}~dx} & = & \displaystyle{\frac{1}{3}\int \sqrt{u}~du}\\
 
&&\\
 
&&\\
Line 51: Line 64:
 
!Step 1: &nbsp;  
 
!Step 1: &nbsp;  
 
|-
 
|-
|Again, we need to use <math>u</math>-substitution. Let <math style="vertical-align: -5px">u=\sin(x).</math> Then, <math style="vertical-align: -5px">du=\cos(x)dx.</math>  
+
|We need to use <math>u</math>-substitution.  
 +
|-
 +
|Let <math style="vertical-align: -5px">u=\sin(x).</math>  
 +
|-
 +
|Then, <math style="vertical-align: -5px">du=\cos(x)dx.</math>  
 
|-
 
|-
 
|Also, we need to change the bounds of integration.
 
|Also, we need to change the bounds of integration.
Line 61: Line 78:
 
|Therefore, the integral becomes  
 
|Therefore, the integral becomes  
 
|-
 
|-
|&nbsp; &nbsp; <math style="vertical-align: -19px">\int_{\frac{\sqrt{2}}{2}}^1 \frac{1}{u^2}~du.</math>
+
|&nbsp; &nbsp; &nbsp; &nbsp; <math style="vertical-align: -19px">\int_{\frac{\sqrt{2}}{2}}^1 \frac{1}{u^2}~du.</math>
 
|}
 
|}
  
Line 70: Line 87:
 
|-
 
|-
 
|
 
|
&nbsp; &nbsp; <math>\begin{array}{rcl}
+
&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 
\displaystyle{\int _{\frac{\pi}{4}}^{\frac{\pi}{2}} \frac{\cos(x)}{\sin^2(x)}~dx} & = & \displaystyle{\int_{\frac{\sqrt{2}}{2}}^1 \frac{1}{u^2}~du}\\
 
\displaystyle{\int _{\frac{\pi}{4}}^{\frac{\pi}{2}} \frac{\cos(x)}{\sin^2(x)}~dx} & = & \displaystyle{\int_{\frac{\sqrt{2}}{2}}^1 \frac{1}{u^2}~du}\\
 
&&\\
 
&&\\
Line 85: Line 102:
 
!Final Answer: &nbsp;  
 
!Final Answer: &nbsp;  
 
|-
 
|-
|'''(a)''' &nbsp; <math>\frac{2}{9}(1+x^3)^{\frac{3}{2}}+C</math>
+
|&nbsp; &nbsp; '''(a)''' &nbsp; &nbsp; <math>\frac{2}{9}(1+x^3)^{\frac{3}{2}}+C</math>
 
|-
 
|-
|'''(b)''' &nbsp; <math>-1+\sqrt{2}</math>
+
|&nbsp; &nbsp; '''(b)''' &nbsp; &nbsp; <math>-1+\sqrt{2}</math>
 
|}
 
|}
 
[[009B_Sample_Midterm_1|'''<u>Return to Sample Exam</u>''']]
 
[[009B_Sample_Midterm_1|'''<u>Return to Sample Exam</u>''']]

Revision as of 16:31, 7 February 2017

Evaluate the indefinite and definite integrals.

a)  
b)  


Foundations:  
How would you integrate

        You could use -substitution.

        Let
        Then,

        Thus,

       


Solution:

(a)

Step 1:  
We need to use -substitution. Let
Then, and 
Therefore, the integral becomes
       
Step 2:  
We now have
       

(b)

Step 1:  
We need to use -substitution.
Let
Then,
Also, we need to change the bounds of integration.
Plugging in our values into the equation
we get and
Therefore, the integral becomes
       
Step 2:  
We now have:

       


Final Answer:  
    (a)    
    (b)    

Return to Sample Exam