Difference between revisions of "009B Sample Midterm 1, Problem 1"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
Line 11: | Line 11: | ||
|- | |- | ||
| | | | ||
− | You could use <math style="vertical-align: 0px">u</math>-substitution. Let <math style="vertical-align: -5px">u=\ln(x).</math> Then, <math style="vertical-align: -13px">du=\frac{1}{x}dx.</math> | + | You could use <math style="vertical-align: 0px">u</math>-substitution. |
+ | |- | ||
+ | | Let <math style="vertical-align: -5px">u=\ln(x).</math> | ||
+ | |- | ||
+ | | Then, <math style="vertical-align: -13px">du=\frac{1}{x}dx.</math> | ||
|- | |- | ||
| | | | ||
− | Thus, <math | + | Thus, |
+ | |- | ||
+ | | | ||
+ | <math>\begin{array}{rcl} | ||
+ | \displaystyle{\int \frac{\ln x}{x}~dx} & = & \displaystyle{\int u~du}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{\frac{u^2}{2}+C}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{\frac{(\ln x)^2}{2}+C.} | ||
+ | \end{array}</math> | ||
|} | |} | ||
Line 30: | Line 43: | ||
|Therefore, the integral becomes | |Therefore, the integral becomes | ||
|- | |- | ||
− | | <math style="vertical-align: -13px">\frac{1}{3}\int \sqrt{u}~du.</math> | + | | <math style="vertical-align: -13px">\frac{1}{3}\int \sqrt{u}~du.</math> |
|} | |} | ||
Line 36: | Line 49: | ||
!Step 2: | !Step 2: | ||
|- | |- | ||
− | |We now have | + | |We now have |
|- | |- | ||
− | | <math>\begin{array}{rcl} | + | | <math>\begin{array}{rcl} |
\displaystyle{\int x^2\sqrt{1+x^3}~dx} & = & \displaystyle{\frac{1}{3}\int \sqrt{u}~du}\\ | \displaystyle{\int x^2\sqrt{1+x^3}~dx} & = & \displaystyle{\frac{1}{3}\int \sqrt{u}~du}\\ | ||
&&\\ | &&\\ | ||
Line 51: | Line 64: | ||
!Step 1: | !Step 1: | ||
|- | |- | ||
− | | | + | |We need to use <math>u</math>-substitution. |
+ | |- | ||
+ | |Let <math style="vertical-align: -5px">u=\sin(x).</math> | ||
+ | |- | ||
+ | |Then, <math style="vertical-align: -5px">du=\cos(x)dx.</math> | ||
|- | |- | ||
|Also, we need to change the bounds of integration. | |Also, we need to change the bounds of integration. | ||
Line 61: | Line 78: | ||
|Therefore, the integral becomes | |Therefore, the integral becomes | ||
|- | |- | ||
− | | <math style="vertical-align: -19px">\int_{\frac{\sqrt{2}}{2}}^1 \frac{1}{u^2}~du.</math> | + | | <math style="vertical-align: -19px">\int_{\frac{\sqrt{2}}{2}}^1 \frac{1}{u^2}~du.</math> |
|} | |} | ||
Line 70: | Line 87: | ||
|- | |- | ||
| | | | ||
− | <math>\begin{array}{rcl} | + | <math>\begin{array}{rcl} |
\displaystyle{\int _{\frac{\pi}{4}}^{\frac{\pi}{2}} \frac{\cos(x)}{\sin^2(x)}~dx} & = & \displaystyle{\int_{\frac{\sqrt{2}}{2}}^1 \frac{1}{u^2}~du}\\ | \displaystyle{\int _{\frac{\pi}{4}}^{\frac{\pi}{2}} \frac{\cos(x)}{\sin^2(x)}~dx} & = & \displaystyle{\int_{\frac{\sqrt{2}}{2}}^1 \frac{1}{u^2}~du}\\ | ||
&&\\ | &&\\ | ||
Line 85: | Line 102: | ||
!Final Answer: | !Final Answer: | ||
|- | |- | ||
− | |'''(a)''' <math>\frac{2}{9}(1+x^3)^{\frac{3}{2}}+C</math> | + | | '''(a)''' <math>\frac{2}{9}(1+x^3)^{\frac{3}{2}}+C</math> |
|- | |- | ||
− | |'''(b)''' <math>-1+\sqrt{2}</math> | + | | '''(b)''' <math>-1+\sqrt{2}</math> |
|} | |} | ||
[[009B_Sample_Midterm_1|'''<u>Return to Sample Exam</u>''']] | [[009B_Sample_Midterm_1|'''<u>Return to Sample Exam</u>''']] |
Revision as of 16:31, 7 February 2017
Evaluate the indefinite and definite integrals.
- a)
- b)
Foundations: |
---|
How would you integrate |
You could use -substitution. |
Let |
Then, |
Thus, |
|
Solution:
(a)
Step 1: |
---|
We need to use -substitution. Let |
Then, and |
Therefore, the integral becomes |
Step 2: |
---|
We now have |
(b)
Step 1: |
---|
We need to use -substitution. |
Let |
Then, |
Also, we need to change the bounds of integration. |
Plugging in our values into the equation |
we get and |
Therefore, the integral becomes |
Step 2: |
---|
We now have: |
|
Final Answer: |
---|
(a) |
(b) |