Difference between revisions of "009B Sample Midterm 1, Problem 1"

From Grad Wiki
Jump to navigation Jump to search
Line 36: Line 36:
 
|We now have:
 
|We now have:
 
|-
 
|-
|&nbsp; &nbsp; <math style="vertical-align: -13px">\int x^2\sqrt{1+x^3}~dx=\frac{1}{3}\int \sqrt{u}~du=\frac{2}{9}u^{\frac{3}{2}}+C=\frac{2}{9}(1+x^3)^{\frac{3}{2}}+C.</math>
+
|&nbsp; &nbsp; <math>\begin{array}{rcl}
 +
\displaystyle{\int x^2\sqrt{1+x^3}~dx} & = & \displaystyle{\frac{1}{3}\int \sqrt{u}~du}\\
 +
&&\\
 +
& = & \displaystyle{\frac{2}{9}u^{\frac{3}{2}}+C}\\
 +
&&\\
 +
& = & \displaystyle{\frac{2}{9}(1+x^3)^{\frac{3}{2}}+C.}
 +
\end{array}</math>
 
|}
 
|}
  
Line 59: Line 65:
 
|We now have:  
 
|We now have:  
 
|-
 
|-
|&nbsp; &nbsp; <math>\int _{\frac{\pi}{4}}^{\frac{\pi}{2}} \frac{\cos(x)}{\sin^2(x)}~dx=\int_{\frac{\sqrt{2}}{2}}^1 \frac{1}{u^2}~du=\left.\frac{-1}{u}\right|_{\frac{\sqrt{2}}{2}}^1=-\frac{1}{1}-\frac{-1}{\frac{\sqrt{2}}{2}}=-1+\sqrt{2}.</math>
+
|
 +
&nbsp; &nbsp; <math>\begin{array}{rcl}
 +
\displaystyle{\int _{\frac{\pi}{4}}^{\frac{\pi}{2}} \frac{\cos(x)}{\sin^2(x)}~dx} & = & \displaystyle{\int_{\frac{\sqrt{2}}{2}}^1 \frac{1}{u^2}~du}\\
 +
&&\\
 +
& = & \displaystyle{\left.\frac{-1}{u}\right|_{\frac{\sqrt{2}}{2}}^1}\\
 +
&&\\
 +
& = & \displaystyle{-\frac{1}{1}-\frac{-1}{\frac{\sqrt{2}}{2}}}\\
 +
&&\\
 +
& = & \displaystyle{-1+\sqrt{2}.}
 +
\end{array}</math>
 
|}
 
|}
  

Revision as of 08:59, 7 February 2017

Evaluate the indefinite and definite integrals.

a)  
b)  


Foundations:  
How would you integrate

    You could use -substitution. Let Then,

    Thus,


Solution:

(a)

Step 1:  
We need to use -substitution. Let
Then, and 
Therefore, the integral becomes 
Step 2:  
We now have:
   

(b)

Step 1:  
Again, we need to use -substitution. Let Then,
Also, we need to change the bounds of integration.
Plugging in our values into the equation
we get and
Therefore, the integral becomes
Step 2:  
We now have:

   


Final Answer:  
(a)  
(b)  

Return to Sample Exam