Difference between revisions of "009B Sample Midterm 3, Problem 5"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
Line 8: | Line 8: | ||
!Foundations: | !Foundations: | ||
|- | |- | ||
− | |Recall the trig | + | |'''1.''' Recall the trig identity |
|- | |- | ||
− | | | + | | <math style="vertical-align: -3px">\tan^2x+1=\sec^2x</math> |
|- | |- | ||
− | |'''2.''' <math style="vertical-align: -13px">\sin^2(x)=\frac{1-\cos(2x)}{2}</math> | + | |'''2.''' Recall the trig identity |
+ | |- | ||
+ | | <math style="vertical-align: -13px">\sin^2(x)=\frac{1-\cos(2x)}{2}</math> | ||
|- | |- | ||
|'''3.''' How would you integrate <math style="vertical-align: -1px">\tan x~dx?</math> | |'''3.''' How would you integrate <math style="vertical-align: -1px">\tan x~dx?</math> | ||
|- | |- | ||
| | | | ||
− | + | You could use <math style="vertical-align: 0px">u</math>-substitution. First, write <math style="vertical-align: -14px">\int \tan x~dx=\int \frac{\sin x}{\cos x}~dx.</math> | |
|- | |- | ||
| | | | ||
− | + | Now, let <math style="vertical-align: -5px">u=\cos(x).</math> Then, <math style="vertical-align: -5px">du=-\sin(x)dx.</math> Thus, | |
|- | |- | ||
| | | | ||
− | + | <math>\begin{array}{rcl} | |
\displaystyle{\int \tan x~dx} & = & \displaystyle{\int \frac{-1}{u}~du}\\ | \displaystyle{\int \tan x~dx} & = & \displaystyle{\int \frac{-1}{u}~du}\\ | ||
&&\\ | &&\\ | ||
Line 82: | Line 84: | ||
<math style="vertical-align: -14px">\int \tan^3x~dx=\frac{\tan^2x}{2}-\int \frac{\sin x}{\cos x}~dx.</math> | <math style="vertical-align: -14px">\int \tan^3x~dx=\frac{\tan^2x}{2}-\int \frac{\sin x}{\cos x}~dx.</math> | ||
|- | |- | ||
− | |Now, we let <math style="vertical-align: 0px">u=\cos x.</math> Then, <math style="vertical-align: -1px">du=-\sin x~dx.</math> | + | |Now, we let <math style="vertical-align: 0px">u=\cos x.</math> Then, <math style="vertical-align: -1px">du=-\sin x~dx.</math> |
+ | |- | ||
+ | |Therefore, we get | ||
|- | |- | ||
| | | | ||
Line 100: | Line 104: | ||
|One of the double angle formulas is <math style="vertical-align: -5px">\cos(2x)=1-2\sin^2(x).</math> | |One of the double angle formulas is <math style="vertical-align: -5px">\cos(2x)=1-2\sin^2(x).</math> | ||
|- | |- | ||
− | |Solving for <math style="vertical-align: -5px">\sin^2(x),</math> we get <math style="vertical-align: -13px">\sin^2(x)=\frac{1-\cos(2x)}{2}.</math> | + | |Solving for <math style="vertical-align: -5px">\sin^2(x),</math> we get |
+ | |- | ||
+ | | <math style="vertical-align: -13px">\sin^2(x)=\frac{1-\cos(2x)}{2}.</math> | ||
|- | |- | ||
|Plugging this identity into our integral, we get | |Plugging this identity into our integral, we get | ||
Line 132: | Line 138: | ||
|Let <math style="vertical-align: -1px">u=2x.</math> Then, <math style="vertical-align: -1px">du=2~dx</math> and <math style="vertical-align: -18px">\frac{du}{2}=dx.</math> | |Let <math style="vertical-align: -1px">u=2x.</math> Then, <math style="vertical-align: -1px">du=2~dx</math> and <math style="vertical-align: -18px">\frac{du}{2}=dx.</math> | ||
|- | |- | ||
− | |Also, since this is a definite integral and we are using <math style="vertical-align: 0px">u</math>-substitution, we need to change the bounds of integration. | + | |Also, since this is a definite integral and we are using <math style="vertical-align: 0px">u</math>-substitution, |
+ | |- | ||
+ | |we need to change the bounds of integration. | ||
|- | |- | ||
|We have <math style="vertical-align: -5px">u_1=2(0)=0</math> and <math style="vertical-align: -5px">u_2=2(\pi)=2\pi.</math> | |We have <math style="vertical-align: -5px">u_1=2(0)=0</math> and <math style="vertical-align: -5px">u_2=2(\pi)=2\pi.</math> |
Revision as of 10:23, 7 February 2017
Evaluate the indefinite and definite integrals.
- a)
- b)
Foundations: |
---|
1. Recall the trig identity |
2. Recall the trig identity |
3. How would you integrate |
You could use -substitution. First, write |
Now, let Then, Thus, |
|
Solution:
(a)
Step 1: |
---|
We start by writing |
|
Since we have |
|
Step 2: |
---|
Now, we need to use -substitution for the first integral. |
Let Then, So, we have |
|
Step 3: |
---|
For the remaining integral, we also need to use -substitution. |
First, we write |
|
Now, we let Then, |
Therefore, we get |
|
(b)
Step 1: |
---|
One of the double angle formulas is |
Solving for we get |
Plugging this identity into our integral, we get |
|
Step 2: |
---|
If we integrate the first integral, we get |
|
Step 3: |
---|
For the remaining integral, we need to use -substitution. |
Let Then, and |
Also, since this is a definite integral and we are using -substitution, |
we need to change the bounds of integration. |
We have and |
So, the integral becomes |
|
Final Answer: |
---|
(a) |
(b) |