Difference between revisions of "009B Sample Midterm 1, Problem 4"

From Grad Wiki
Jump to navigation Jump to search
Line 7: Line 7:
 
!Foundations:    
 
!Foundations:    
 
|-
 
|-
|'''1.''' Recall the trig identity: <math style="vertical-align: -2px">\sin^2x+\cos^2x=1.</math>
+
|'''1.''' Recall the trig identity:  
 +
|-
 +
| &nbsp; &nbsp; <math style="vertical-align: -2px">\sin^2x+\cos^2x=1</math>
 
|-
 
|-
 
|'''2.''' How would you integrate <math style="vertical-align: -14px">\int \sin^2x\cos x~dx?</math>
 
|'''2.''' How would you integrate <math style="vertical-align: -14px">\int \sin^2x\cos x~dx?</math>
 
|-
 
|-
 
|
 
|
::You could use <math style="vertical-align: 0px">u</math>-substitution. Let <math style="vertical-align: -2px">u=\sin x.</math> Then, <math style="vertical-align: -1px">du=\cos x~dx.</math>
+
&nbsp; &nbsp; You could use <math style="vertical-align: 0px">u</math>-substitution. Let <math style="vertical-align: -2px">u=\sin x.</math>  
 +
|-
 +
|&nbsp; &nbsp; Then, <math style="vertical-align: -1px">du=\cos x~dx.</math> Thus,
 
|-
 
|-
 
|
 
|
::Thus, <math style="vertical-align: -14px">\int \sin^2x\cos x~dx=\int u^2~du=\frac{u^3}{3}+C=\frac{\sin^3x}{3}+C.</math>
+
&nbsp; &nbsp; <math>\begin{array}{rcl}
 +
\displaystyle{\int \sin^2x\cos x~dx} & = & \displaystyle{\int u^2~du}\\
 +
&&\\
 +
& = & \displaystyle{\frac{u^3}{3}+C}\\
 +
&&\\
 +
& = & \displaystyle{\frac{\sin^3x}{3}+C.}
 +
\end{array}</math>
 
|}
 
|}
  
Line 27: Line 37:
 
| &nbsp; &nbsp; <math style="vertical-align: -13px">\int\sin^3x\cos^2x~dx=\int (\sin x) \sin^2x\cos^2x~dx.</math>
 
| &nbsp; &nbsp; <math style="vertical-align: -13px">\int\sin^3x\cos^2x~dx=\int (\sin x) \sin^2x\cos^2x~dx.</math>
 
|-
 
|-
|Using the identity <math style="vertical-align: -4px">\sin^2x+\cos^2x=1,</math> we get <math style="vertical-align: -1px">\sin^2x=1-\cos^2x.</math> If we use this identity, we have
+
|Using the identity <math style="vertical-align: -4px">\sin^2x+\cos^2x=1,</math>  
 +
|-
 +
|we get <math style="vertical-align: -1px">\sin^2x=1-\cos^2x.</math>
 
|-
 
|-
| &nbsp; &nbsp; <math style="vertical-align: -13px">\int\sin^3x\cos^2x~dx=\int (\sin x) (1-\cos^2x)\cos^2x~dx=\int (\cos^2x-\cos^4x)\sin(x)~dx.</math>
+
|If we use this identity, we have
 
|-
 
|-
|
+
|  
 +
&nbsp; &nbsp; <math>\begin{array}{rcl}
 +
\displaystyle{\int\sin^3x\cos^2x~dx} & = & \displaystyle{\int (\sin x) (1-\cos^2x)\cos^2x~dx}\\
 +
&&\\
 +
& = & \displaystyle{\int (\cos^2x-\cos^4x)\sin(x)~dx.}
 +
\end{array}</math>
 
|}
 
|}
  
Line 37: Line 54:
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 
|-
 
|-
|Now, we use <math style="vertical-align: 0px">u</math>-substitution. Let <math style="vertical-align: -5px">u=\cos(x).</math> Then, <math style="vertical-align: -5px">du=-\sin(x)dx.</math> Therefore,
+
|Now, we use <math style="vertical-align: 0px">u</math>-substitution.  
 
|-
 
|-
| &nbsp;&nbsp; <math style="vertical-align: -14px">\int\sin^3x\cos^2x~dx=\int -(u^2-u^4)~du=\frac{-u^3}{3}+\frac{u^5}{5}+C=\frac{\cos^5x}{5}-\frac{\cos^3x}{3}+C.</math>
+
|Let <math style="vertical-align: -5px">u=\cos(x).</math> Then, <math style="vertical-align: -5px">du=-\sin(x)dx.</math>
 +
|-
 +
|Therefore,
 +
|-
 +
|
 +
&nbsp; &nbsp; <math>\begin{array}{rcl}
 +
\displaystyle{\int\sin^3x\cos^2x~dx} & = & \displaystyle{\int -(u^2-u^4)~du}\\
 +
&&\\
 +
& = & \displaystyle{\frac{-u^3}{3}+\frac{u^5}{5}+C}\\
 +
&&\\
 +
& = & \displaystyle{\frac{\cos^5x}{5}-\frac{\cos^3x}{3}+C.}
 +
\end{array}</math>
 
|}
 
|}
  

Revision as of 09:20, 7 February 2017

Evaluate the integral:


Foundations:  
1. Recall the trig identity:
   
2. How would you integrate

    You could use -substitution. Let

    Then, Thus,

   


Solution:

Step 1:  
First, we write
   
Using the identity
we get
If we use this identity, we have

   

Step 2:  
Now, we use -substitution.
Let Then,
Therefore,

   


Final Answer:  
  

Return to Sample Exam