Difference between revisions of "009B Sample Midterm 3, Problem 3"

From Grad Wiki
Jump to navigation Jump to search
Line 11: Line 11:
 
|-
 
|-
 
|
 
|
::You could use <math style="vertical-align: 0px">u</math>-substitution. Let <math style="vertical-align: -3px">u=x^2+1.</math> Then, <math style="vertical-align: -1px">du=2x~dx.</math> Thus,
+
&nbsp; &nbsp; You could use <math style="vertical-align: 0px">u</math>-substitution.  
 +
|-
 +
|&nbsp; &nbsp; Let <math style="vertical-align: -3px">u=x^2+1.</math> Then, <math style="vertical-align: -1px">du=2x~dx.</math> Thus,
 
|-
 
|-
 
|
 
|
::<math>\begin{array}{rcl}
+
&nbsp; &nbsp; <math>\begin{array}{rcl}
 
\displaystyle{\int 2x(x^2+1)^3~dx} & = & \displaystyle{\int u^3~du}\\
 
\displaystyle{\int 2x(x^2+1)^3~dx} & = & \displaystyle{\int u^3~du}\\
 
&&\\
 
&&\\
Line 30: Line 32:
 
!Step 1: &nbsp;  
 
!Step 1: &nbsp;  
 
|-
 
|-
|We proceed using <math style="vertical-align: 0px">u</math>-substitution. Let <math style="vertical-align: -1px">u=x^3.</math> Then, <math style="vertical-align: -1px">du=3x^2~dx</math> and <math style="vertical-align: -14px">\frac{du}{3}=x^2~dx.</math>
+
|We proceed using <math style="vertical-align: 0px">u</math>-substitution.  
 +
|-
 +
|Let <math style="vertical-align: -1px">u=x^3.</math> Then, <math style="vertical-align: -1px">du=3x^2~dx</math> and <math style="vertical-align: -14px">\frac{du}{3}=x^2~dx.</math>
 
|-
 
|-
 
|Therefore, we have
 
|Therefore, we have
Line 55: Line 59:
 
!Step 1: &nbsp;  
 
!Step 1: &nbsp;  
 
|-
 
|-
|Again, we proceed using u substitution. Let <math style="vertical-align: -5px">u=\cos(x).</math> Then, <math style="vertical-align: -5px">du=-\sin(x)~dx.</math>  
+
|We proceed using u substitution.  
 +
|-
 +
|Let <math style="vertical-align: -5px">u=\cos(x).</math> Then, <math style="vertical-align: -5px">du=-\sin(x)~dx.</math>  
 
|-
 
|-
 
|Since this is a definite integral, we need to change the bounds of integration.  
 
|Since this is a definite integral, we need to change the bounds of integration.  
Line 65: Line 71:
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 
|-
 
|-
|So, we get  
+
|Therefore, we get  
 
|-
 
|-
 
|
 
|

Revision as of 10:17, 7 February 2017

Compute the following integrals:

a)  
b)  


Foundations:  
How would you integrate

    You could use -substitution.

    Let Then, Thus,

   


Solution:

(a)

Step 1:  
We proceed using -substitution.
Let Then, and
Therefore, we have

   

Step 2:  
We integrate to get

  

(b)

Step 1:  
We proceed using u substitution.
Let Then,
Since this is a definite integral, we need to change the bounds of integration.
We have and
Step 2:  
Therefore, we get

   


Final Answer:  
(a)  
(b)  

Return to Sample Exam