Difference between revisions of "009B Sample Midterm 3, Problem 2"

From Grad Wiki
Jump to navigation Jump to search
Line 10: Line 10:
 
|-
 
|-
 
|
 
|
::First, we need to switch the bounds of integration.  
+
  First, we need to switch the bounds of integration.  
 
|-
 
|-
 
|
 
|
::So, we have <math style="vertical-align: -16px">G(x)=-\int_5^x \frac{1}{1+u^{10}}~du.</math>
+
&nbsp; So, we have <math style="vertical-align: -16px">G(x)=-\int_5^x \frac{1}{1+u^{10}}~du.</math>
 
|-
 
|-
 
|
 
|
::By Part 1 of the Fundamental Theorem of Calculus, <math style="vertical-align: -16px">G'(x)=-\frac{1}{1+x^{10}}.</math>  
+
&nbsp; By Part 1 of the Fundamental Theorem of Calculus, <math style="vertical-align: -16px">G'(x)=-\frac{1}{1+x^{10}}.</math>  
 
|}
 
|}
  
Line 27: Line 27:
 
|-
 
|-
 
|
 
|
:Let <math style="vertical-align: -5px">f</math> be continuous on <math style="vertical-align: -5px">[a,b]</math> and let <math style="vertical-align: -14px">F(x)=\int_a^x f(t)~dt.</math>
+
Let <math style="vertical-align: -5px">f</math> be continuous on <math style="vertical-align: -5px">[a,b]</math> and let <math style="vertical-align: -14px">F(x)=\int_a^x f(t)~dt.</math>
 
|-
 
|-
 
|
 
|
:Then, <math style="vertical-align: -1px">F</math> is a differentiable function on <math style="vertical-align: -5px">(a,b)</math> and <math style="vertical-align: -5px">F'(x)=f(x).</math>
+
Then, <math style="vertical-align: -1px">F</math> is a differentiable function on <math style="vertical-align: -5px">(a,b)</math> and <math style="vertical-align: -5px">F'(x)=f(x).</math>
 
|-
 
|-
 
|'''The Fundamental Theorem of Calculus, Part 2'''
 
|'''The Fundamental Theorem of Calculus, Part 2'''
 
|-
 
|-
 
|
 
|
:Let <math style="vertical-align: -5px">f</math> be continuous on <math style="vertical-align: -5px">[a,b]</math> and let <math style="vertical-align: -1px">F</math> be any antiderivative of <math style="vertical-align: -5px">f.</math>
+
Let <math style="vertical-align: -5px">f</math> be continuous on <math style="vertical-align: -5px">[a,b]</math> and let <math style="vertical-align: -1px">F</math> be any antiderivative of <math style="vertical-align: -5px">f.</math> Then,
 
|-
 
|-
 
|
 
|
:Then, <math style="vertical-align: -14px">\int_a^b f(x)~dx=F(b)-F(a).</math>
+
&nbsp; &nbsp; <math style="vertical-align: -14px">\int_a^b f(x)~dx=F(b)-F(a).</math>
 
|}
 
|}
  
Line 44: Line 44:
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 
|-
 
|-
|First, we have
+
|First,
 
|-
 
|-
|
+
|&nbsp; &nbsp; <math style="vertical-align: -15px">F(x)=-\int_5^{\cos (x)} \frac{1}{1+u^{10}}~du.</math>
::<math style="vertical-align: -15px">F(x)=-\int_5^{\cos (x)} \frac{1}{1+u^{10}}~du.</math>
 
 
|-
 
|-
 
|Now, let <math style="vertical-align: -5px">g(x)=\cos(x)</math> and <math style="vertical-align: -15px">G(x)=\int_5^x \frac{1}{1+u^{10}}~du.</math>  
 
|Now, let <math style="vertical-align: -5px">g(x)=\cos(x)</math> and <math style="vertical-align: -15px">G(x)=\int_5^x \frac{1}{1+u^{10}}~du.</math>  
 
|-
 
|-
|So,  
+
|Therefore,  
 
|-
 
|-
 
|
 
|
::<math style="vertical-align: -5px">F(x)=-G(g(x)).</math>
+
&nbsp; &nbsp; <math style="vertical-align: -5px">F(x)=-G(g(x)).</math>
 +
|-
 +
|Hence,
 +
|-
 +
|&nbsp; &nbsp; <math style="vertical-align: -5px">F'(x)=-G'(g(x))g'(x)</math>  
 
|-
 
|-
|Hence, <math style="vertical-align: -5px">F'(x)=-G'(g(x))g'(x)</math> by the Chain Rule.
+
|by the Chain Rule.
 
|}
 
|}
  
Line 67: Line 70:
 
|-
 
|-
 
|
 
|
::<math style="vertical-align: -15px">G'(x)=\frac{1}{1+x^{10}}.</math>
+
&nbsp; &nbsp; <math style="vertical-align: -15px">G'(x)=\frac{1}{1+x^{10}}.</math>
 
|-
 
|-
 
|Hence,
 
|Hence,
 
|-
 
|-
 
|
 
|
::<math>\begin{array}{rcl}
+
&nbsp; &nbsp; <math>\begin{array}{rcl}
 
\displaystyle{F'(x)} & = & \displaystyle{-\frac{1}{1+\cos^{10}x}(-\sin(x))}\\
 
\displaystyle{F'(x)} & = & \displaystyle{-\frac{1}{1+\cos^{10}x}(-\sin(x))}\\
 
&&\\
 
&&\\
Line 94: Line 97:
 
|-
 
|-
 
|
 
|
Let <math style="vertical-align: -5px">f</math> be continuous on <math style="vertical-align: -5px">[a,b]</math> and let <math style="vertical-align: -1px">F</math> be any antiderivative of <math style="vertical-align: -5px">f.</math>
+
Let <math style="vertical-align: -5px">f</math> be continuous on <math style="vertical-align: -5px">[a,b]</math> and let <math style="vertical-align: -1px">F</math> be any antiderivative of <math style="vertical-align: -5px">f.</math> Then,
 
|-
 
|-
 
|
 
|
Then, <math style="vertical-align: -14px">\int_a^b f(x)~dx=F(b)-F(a).</math>
+
&nbsp; &nbsp; <math style="vertical-align: -14px">\int_a^b f(x)~dx=F(b)-F(a).</math>
 
|-
 
|-
 
|&nbsp;&nbsp; <math>F'(x)=\frac{\sin(x)}{1+\cos^{10}x}</math>
 
|&nbsp;&nbsp; <math>F'(x)=\frac{\sin(x)}{1+\cos^{10}x}</math>
 
|}
 
|}
 
[[009B_Sample_Midterm_3|'''<u>Return to Sample Exam</u>''']]
 
[[009B_Sample_Midterm_3|'''<u>Return to Sample Exam</u>''']]

Revision as of 10:14, 7 February 2017

State the fundamental theorem of calculus, and use this theorem to find the derivative of


Foundations:  
What does Part 1 of the Fundamental Theorem of Calculus say is the derivative of

  First, we need to switch the bounds of integration.

  So, we have

  By Part 1 of the Fundamental Theorem of Calculus,


Solution:

Step 1:  
The Fundamental Theorem of Calculus, Part 1

Let be continuous on and let

Then, is a differentiable function on and

The Fundamental Theorem of Calculus, Part 2

Let be continuous on and let be any antiderivative of Then,

   

Step 2:  
First,
   
Now, let and
Therefore,

   

Hence,
   
by the Chain Rule.
Step 3:  
Now,
By the Fundamental Theorem of Calculus,

   

Hence,

   


Final Answer:  
The Fundamental Theorem of Calculus, Part 1

Let be continuous on and let

Then, is a differentiable function on and

The Fundamental Theorem of Calculus, Part 2

Let be continuous on and let be any antiderivative of Then,

   

  

Return to Sample Exam