Difference between revisions of "009B Sample Midterm 2, Problem 2"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
| Line 12: | Line 12: | ||
|- | |- | ||
| | | | ||
| − | + | You could use <math style="vertical-align: 0px">u</math>-substitution. | |
| + | |- | ||
| + | | Let <math style="vertical-align: -2px">u=x^2+x.</math> Then, <math style="vertical-align: -4px">du=(2x+1)~dx.</math> | ||
| + | |- | ||
| + | | | ||
| + | Thus, | ||
|- | |- | ||
| | | | ||
| − | + | <math>\begin{array}{rcl} | |
| + | \displaystyle{\int (2x+1)\sqrt{x^2+x}~dx} & = & \displaystyle{\int \sqrt{u}~du}\\ | ||
| + | &&\\ | ||
| + | & = & \displaystyle{\frac{2}{3}u^{3/2}+C}\\ | ||
| + | &&\\ | ||
| + | & = & \displaystyle{\frac{2}{3}(x^2+x)^{3/2}+C.} | ||
| + | \end{array}</math> | ||
|} | |} | ||
| Line 27: | Line 38: | ||
|We multiply the product inside the integral to get | |We multiply the product inside the integral to get | ||
|- | |- | ||
| − | | <math | + | | |
| + | <math>\begin{array}{rcl} | ||
| + | \displaystyle{\int_1^2\bigg(2t+\frac{3}{t^2}\bigg)\bigg(4t^2-\frac{5}{t}\bigg)~dt} & = & \displaystyle{\int_1^2 \bigg(8t^3-10+12-\frac{15}{t^3}\bigg)~dt}\\ | ||
| + | &&\\ | ||
| + | & = & \displaystyle{\int_1^2 (8t^3+2-15t^{-3})~dt.} | ||
| + | \end{array}</math> | ||
|} | |} | ||
| Line 39: | Line 55: | ||
|We now evaluate to get | |We now evaluate to get | ||
|- | |- | ||
| − | | <math | + | | |
| + | <math>\begin{array}{rcl} | ||
| + | \displaystyle{\int_1^2\bigg(2t+\frac{3}{t^2}\bigg)\bigg(4t^2-\frac{5}{t}\bigg)~dt} & = & \displaystyle{2(2)^4+2(2)+\frac{15}{2(2)^2}-\bigg(2+2+\frac{15}{2}\bigg)}\\ | ||
| + | &&\\ | ||
| + | & = & \displaystyle{36+\frac{15}{8}-4-\frac{15}{2}}\\ | ||
| + | &&\\ | ||
| + | & = & \displaystyle{\frac{211}{8}.} | ||
| + | \end{array}</math> | ||
|} | |} | ||
| Line 46: | Line 69: | ||
!Step 1: | !Step 1: | ||
|- | |- | ||
| − | |We use <math style="vertical-align: 0px">u</math>-substitution | + | |We use <math style="vertical-align: 0px">u</math>-substitution. |
|- | |- | ||
| − | | | + | |Let <math style="vertical-align: -2px">u=x^4+2x^2+4.</math> Then, <math style="vertical-align: -5px">du=(4x^3+4x)dx</math> and <math style="vertical-align: -14px">\frac{du}{4}=(x^3+x)dx.</math> |
|- | |- | ||
| − | | | + | |Also, we need to change the bounds of integration. |
|- | |- | ||
| − | | | + | |Plugging in our values into the equation <math style="vertical-align: -4px">u=x^4+2x^2+4,</math> |
| + | |- | ||
| + | |we get <math style="vertical-align: -5px">u_1=0^4+2(0)^2+4=4</math> and <math style="vertical-align: -5px">u_2=2^4+2(2)^2+4=28.</math> | ||
| + | |- | ||
| + | |Therefore, the integral becomes | ||
| + | |- | ||
| + | | <math style="vertical-align: -14px">\frac{1}{4}\int_4^{28}\sqrt{u}~du.</math> | ||
|} | |} | ||
| Line 58: | Line 87: | ||
!Step 2: | !Step 2: | ||
|- | |- | ||
| − | |We now have | + | |We now have |
|- | |- | ||
| − | | <math | + | | |
| + | <math>\begin{array}{rcl} | ||
| + | \displaystyle{\int_0^2 (x^3+x)\sqrt{x^4+2x^2+4}~dx} & = & \displaystyle{\frac{1}{4}\int_4^{28}\sqrt{u}~du}\\ | ||
| + | &&\\ | ||
| + | & = & \displaystyle{\left.\frac{1}{6}u^{\frac{3}{2}}\right|_4^{28}}\\ | ||
| + | &&\\ | ||
| + | & = & \displaystyle{\frac{1}{6}(28^{\frac{3}{2}}-4^{\frac{3}{2}})}\\ | ||
| + | &&\\ | ||
| + | & = & \displaystyle{\frac{1}{6}((\sqrt{28})^3-(\sqrt{4})^3)}\\ | ||
| + | &&\\ | ||
| + | & = & \displaystyle{\frac{1}{6}((2\sqrt{7})^3-2^3).} | ||
| + | \end{array}</math> | ||
|- | |- | ||
| − | | | + | |Therefore, |
|- | |- | ||
| <math style="vertical-align: -16px">\int_0^2 (x^3+x)\sqrt{x^4+2x^2+4}~dx=\frac{28\sqrt{7}-4}{3}.</math> | | <math style="vertical-align: -16px">\int_0^2 (x^3+x)\sqrt{x^4+2x^2+4}~dx=\frac{28\sqrt{7}-4}{3}.</math> | ||
Revision as of 09:43, 7 February 2017
Evaluate
- a)
- b)
| Foundations: |
|---|
| How would you integrate |
|
You could use -substitution. |
| Let Then, |
|
Thus, |
|
|
Solution:
(a)
| Step 1: |
|---|
| We multiply the product inside the integral to get |
|
|
| Step 2: |
|---|
| We integrate to get |
| We now evaluate to get |
|
|
(b)
| Step 1: |
|---|
| We use -substitution. |
| Let Then, and |
| Also, we need to change the bounds of integration. |
| Plugging in our values into the equation |
| we get and |
| Therefore, the integral becomes |
| Step 2: |
|---|
| We now have |
|
|
| Therefore, |
| Final Answer: |
|---|
| (a) |
| (b) |