Difference between revisions of "009B Sample Midterm 2, Problem 1"

From Grad Wiki
Jump to navigation Jump to search
Line 14: Line 14:
 
|-
 
|-
 
|
 
|
::Part 1 of the Fundamental Theorem of Calculus says that <math style="vertical-align: -15px">\frac{d}{dx}\int_0^x\sin(t)~dt=\sin(x).</math>
+
&nbsp; &nbsp; Part 1 of the Fundamental Theorem of Calculus says that  
 +
|-
 +
|&nbsp; &nbsp; <math style="vertical-align: -15px">\frac{d}{dx}\int_0^x\sin(t)~dt=\sin(x).</math>
 
|-
 
|-
 
|'''2.''' What does Part 2 of the Fundamental Theorem of Calculus say about <math style="vertical-align: -15px">\int_a^b\sec^2x~dx</math> where <math style="vertical-align: -5px">a,b</math> are constants?
 
|'''2.''' What does Part 2 of the Fundamental Theorem of Calculus say about <math style="vertical-align: -15px">\int_a^b\sec^2x~dx</math> where <math style="vertical-align: -5px">a,b</math> are constants?
 
|-
 
|-
 
|
 
|
::Part 2 of the Fundamental Theorem of Calculus says that <math style="vertical-align: -15px">\int_a^b\sec^2x~dx=F(b)-F(a)</math> where <math style="vertical-align: 0px">F</math> is any antiderivative of <math style="vertical-align: 0px">\sec^2x.</math>
+
&nbsp; &nbsp; Part 2 of the Fundamental Theorem of Calculus says that  
 +
|-
 +
|&nbsp; &nbsp; <math style="vertical-align: -15px">\int_a^b\sec^2x~dx=F(b)-F(a)</math> where <math style="vertical-align: 0px">F</math> is any antiderivative of <math style="vertical-align: 0px">\sec^2x.</math>
 
|}
 
|}
  
Line 46: Line 50:
 
|Let <math style="vertical-align: -4px">f</math> be continuous on <math style="vertical-align: -5px">[a,b]</math> and let <math style="vertical-align: 0px">F</math> be any antiderivative of <math style="vertical-align: -4px">f.</math>
 
|Let <math style="vertical-align: -4px">f</math> be continuous on <math style="vertical-align: -5px">[a,b]</math> and let <math style="vertical-align: 0px">F</math> be any antiderivative of <math style="vertical-align: -4px">f.</math>
 
|-
 
|-
|Then, <math style="vertical-align: -14px">\int_a^b f(x)~dx=F(b)-F(a).</math>
+
|Then,
 +
|-
 +
|&nbsp; &nbsp; <math style="vertical-align: -14px">\int_a^b f(x)~dx=F(b)-F(a).</math>
 
|}
 
|}
 +
 
'''(b)'''
 
'''(b)'''
  
Line 53: Line 60:
 
!Step 1: &nbsp;  
 
!Step 1: &nbsp;  
 
|-
 
|-
|Let <math style="vertical-align: -15px">F(x)=\int_0^{\cos (x)}\sin (t)~dt.</math> The problem is asking us to find <math style="vertical-align: -5px">F'(x).</math>
+
|Let <math style="vertical-align: -15px">F(x)=\int_0^{\cos (x)}\sin (t)~dt.</math>  
 +
|-
 +
|The problem is asking us to find <math style="vertical-align: -5px">F'(x).</math>
 
|-
 
|-
 
|Let <math style="vertical-align: -5px">g(x)=\cos(x)</math> and <math style="vertical-align: -14px">G(x)=\int_0^x \sin(t)~dt.</math>
 
|Let <math style="vertical-align: -5px">g(x)=\cos(x)</math> and <math style="vertical-align: -14px">G(x)=\int_0^x \sin(t)~dt.</math>
 
|-
 
|-
|Then, <math style="vertical-align: -5px">F(x)=G(g(x)).</math>
+
|Then,  
 +
|-
 +
|&nbsp; &nbsp; <math style="vertical-align: -5px">F(x)=G(g(x)).</math>
 
|}
 
|}
  
Line 63: Line 74:
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 
|-
 
|-
|If we take the derivative of both sides of the last equation, we get <math style="vertical-align: -5px">F'(x)=G'(g(x))g'(x)</math> by the Chain Rule.
+
|If we take the derivative of both sides of the last equation,  
 +
|-
 +
|we get <math style="vertical-align: -5px">F'(x)=G'(g(x))g'(x)</math> by the Chain Rule.
 
|}
 
|}
  
Line 96: Line 109:
 
|-
 
|-
 
| &nbsp;&nbsp; <math style="vertical-align: -16px">\int_{0}^{\frac{\pi}{4}}\sec^2 x~dx=\tan \bigg(\frac{\pi}{4}\bigg)-\tan (0)=1.</math>
 
| &nbsp;&nbsp; <math style="vertical-align: -16px">\int_{0}^{\frac{\pi}{4}}\sec^2 x~dx=\tan \bigg(\frac{\pi}{4}\bigg)-\tan (0)=1.</math>
|-
 
|
 
 
|}
 
|}
  

Revision as of 09:33, 7 February 2017

This problem has three parts:

a) State the Fundamental Theorem of Calculus.
b) Compute  
c) Evaluate


Foundations:  
1. What does Part 1 of the Fundamental Theorem of Calculus say about

    Part 1 of the Fundamental Theorem of Calculus says that

   
2. What does Part 2 of the Fundamental Theorem of Calculus say about where are constants?

    Part 2 of the Fundamental Theorem of Calculus says that

    where is any antiderivative of


Solution:

(a)

Step 1:  
The Fundamental Theorem of Calculus has two parts.
The Fundamental Theorem of Calculus, Part 1
Let be continuous on and let
Then, is a differentiable function on and
Step 2:  
The Fundamental Theorem of Calculus, Part 2
Let be continuous on and let be any antiderivative of
Then,
   

(b)

Step 1:  
Let
The problem is asking us to find
Let and
Then,
   
Step 2:  
If we take the derivative of both sides of the last equation,
we get by the Chain Rule.
Step 3:  
Now, and by the Fundamental Theorem of Calculus, Part 1.
Since
   
we have
   

(c)

Step 1:  
Using the Fundamental Theorem of Calculus, Part 2, we have
  
Step 2:  
So, we get
  


Final Answer:  
(a)
The Fundamental Theorem of Calculus, Part 1
Let be continuous on and let
Then, is a differentiable function on and
The Fundamental Theorem of Calculus, Part 2
Let be continuous on and let be any antiderivative of
Then,
(b)  
(c)  

Return to Sample Exam