Difference between revisions of "009B Sample Midterm 1, Problem 4"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
| Line 17: | Line 17: | ||
::Thus, <math style="vertical-align: -14px">\int \sin^2x\cos x~dx=\int u^2~du=\frac{u^3}{3}+C=\frac{\sin^3x}{3}+C.</math> | ::Thus, <math style="vertical-align: -14px">\int \sin^2x\cos x~dx=\int u^2~du=\frac{u^3}{3}+C=\frac{\sin^3x}{3}+C.</math> | ||
|} | |} | ||
| + | |||
'''Solution:''' | '''Solution:''' | ||
| Line 40: | Line 41: | ||
| <math style="vertical-align: -14px">\int\sin^3x\cos^2x~dx=\int -(u^2-u^4)~du=\frac{-u^3}{3}+\frac{u^5}{5}+C=\frac{\cos^5x}{5}-\frac{\cos^3x}{3}+C.</math> | | <math style="vertical-align: -14px">\int\sin^3x\cos^2x~dx=\int -(u^2-u^4)~du=\frac{-u^3}{3}+\frac{u^5}{5}+C=\frac{\cos^5x}{5}-\frac{\cos^3x}{3}+C.</math> | ||
|} | |} | ||
| + | |||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
Revision as of 09:12, 6 February 2017
Evaluate the integral:
| Foundations: |
|---|
| Recall the trig identity: |
| How would you integrate |
|
|
Solution:
| Step 1: |
|---|
| First, we write |
| Using the identity we get If we use this identity, we have |
| Step 2: |
|---|
| Now, we use -substitution. Let Then, Therefore, |
| Final Answer: |
|---|