Difference between revisions of "009B Sample Midterm 1, Problem 4"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
Line 24: | Line 24: | ||
|First, we write | |First, we write | ||
|- | |- | ||
− | | <math style="vertical-align: -13px">\int\sin^3x\cos^2x~dx=\int (\sin x) \sin^2x\cos^2x~dx</math> | + | | <math style="vertical-align: -13px">\int\sin^3x\cos^2x~dx=\int (\sin x) \sin^2x\cos^2x~dx.</math> |
|- | |- | ||
− | |Using the identity <math style="vertical-align: - | + | |Using the identity <math style="vertical-align: -4px">\sin^2x+\cos^2x=1,</math> we get <math style="vertical-align: -1px">\sin^2x=1-\cos^2x.</math> If we use this identity, we have |
|- | |- | ||
− | | <math style="vertical-align: -13px">\int\sin^3x\cos^2x~dx=\int (\sin x) (1-\cos^2x)\cos^2x~dx=\int (\cos^2x-\cos^4x)\sin(x)~dx</math> | + | | <math style="vertical-align: -13px">\int\sin^3x\cos^2x~dx=\int (\sin x) (1-\cos^2x)\cos^2x~dx=\int (\cos^2x-\cos^4x)\sin(x)~dx.</math> |
|- | |- | ||
| | | | ||
Line 36: | Line 36: | ||
!Step 2: | !Step 2: | ||
|- | |- | ||
− | |Now, we use <math style="vertical-align: 0px">u</math>-substitution. Let <math style="vertical-align: -5px">u=\cos(x)</math> | + | |Now, we use <math style="vertical-align: 0px">u</math>-substitution. Let <math style="vertical-align: -5px">u=\cos(x).</math> Then, <math style="vertical-align: -5px">du=-\sin(x)dx.</math> Therefore, |
|- | |- | ||
− | | <math style="vertical-align: -14px">\int\sin^3x\cos^2x~dx=\int -(u^2-u^4)~du=\frac{-u^3}{3}+\frac{u^5}{5}+C=\frac{\cos^5x}{5}-\frac{\cos^3x}{3}+C</math> | + | | <math style="vertical-align: -14px">\int\sin^3x\cos^2x~dx=\int -(u^2-u^4)~du=\frac{-u^3}{3}+\frac{u^5}{5}+C=\frac{\cos^5x}{5}-\frac{\cos^3x}{3}+C.</math> |
|} | |} | ||
Revision as of 09:08, 6 February 2017
Evaluate the integral:
Foundations: |
---|
Recall the trig identity: |
How would you integrate |
|
|
Solution:
Step 1: |
---|
First, we write |
Using the identity we get If we use this identity, we have |
Step 2: |
---|
Now, we use -substitution. Let Then, Therefore, |
Final Answer: |
---|