Difference between revisions of "009C Sample Midterm 2, Problem 5"

From Grad Wiki
Jump to navigation Jump to search
Line 9: Line 9:
 
!Foundations:    
 
!Foundations:    
 
|-
 
|-
|  
+
| Geometric Series
 
|-
 
|-
 
|
 
|
Line 17: Line 17:
 
::
 
::
 
|}
 
|}
 +
  
 
'''Solution:'''
 
'''Solution:'''
Line 22: Line 23:
 
'''(a)'''
 
'''(a)'''
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
!Step 1:    
+
!Step 1:  
 
|-
 
|-
|
+
|First, we notice that <math>\sum_{n=0}^\infty c_nx^n</math> is a geometric series.
 +
|-
 +
|We have <math>r=x.</math>
 +
|-
 +
|Since this series converges,
 
|-
 
|-
|
+
|&nbsp; &nbsp; &nbsp; &nbsp; <math>|r|=|x|<1.</math>
 
|}
 
|}
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 +
|-
 +
|The series <math>\sum_{n=0} c_n\bigg(\frac{x}{2}\bigg)^n</math> is also a geometric series.
 +
|-
 +
|For this series, <math>r=\frac{x}{2}.</math>
 +
|-
 +
|Now, we notice
 
|-
 
|-
 
|
 
|
 +
&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 +
\displaystyle{|r|} & = & \displaystyle{\bigg|\frac{x}{2}\bigg|}\\
 +
&&\\
 +
& = & \displaystyle{\frac{|x|}{2}}\\
 +
&&\\
 +
& < & \displaystyle{\frac{1}{2}}
 +
\end{array}</math>
 
|-
 
|-
|
+
|since <math>|x|<1.</math>
 +
|-
 +
| Since <math>|r|<1,</math> this series converges.
 
|}
 
|}
  
 
'''(b)'''
 
'''(b)'''
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
!Step 1: &nbsp;  
+
!Step 1: &nbsp;
 
|-
 
|-
|
+
|First, we notice that <math>\sum_{n=0}^\infty c_nx^n</math> is a geometric series.
 
|-
 
|-
|
+
|We have <math>r=x.</math>
 
|-
 
|-
|
+
|Since this series converges,
 
|-
 
|-
|
+
|&nbsp; &nbsp; &nbsp; &nbsp; <math>|r|=|x|<1.</math>
 
|}
 
|}
  
Line 53: Line 73:
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 
|-
 
|-
|  
+
|The series <math>\sum_{n=0}^\infty c_n(-x)^n</math> is also a geometric series.
 +
|-
 +
|For this series, <math>r=-x.</math>
 +
|-
 +
|Now, we notice
 
|-
 
|-
 
|
 
|
 +
&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 +
\displaystyle{|r|} & = & \displaystyle{|-x|}\\
 +
&&\\
 +
& = & \displaystyle{|x|}\\
 +
&&\\
 +
& < & \displaystyle{1}
 +
\end{array}</math>
 
|-
 
|-
|
+
|since <math>|x|<1.</math>
 
|-
 
|-
|
+
|Since <math>|r|<1,</math> this series converges.
 
|}
 
|}
 +
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Final Answer: &nbsp;  
 
!Final Answer: &nbsp;  
 
|-
 
|-
|'''(a)'''  
+
|&nbsp; &nbsp; '''(a)''' &nbsp; &nbsp; The series converges.
 
|-
 
|-
|'''(b)'''  
+
|&nbsp; &nbsp; '''(b)''' &nbsp; &nbsp; The series converges.
 
|}
 
|}
 
[[009C_Sample_Midterm_2|'''<u>Return to Sample Exam</u>''']]
 
[[009C_Sample_Midterm_2|'''<u>Return to Sample Exam</u>''']]

Revision as of 10:06, 13 February 2017

If converges, does it follow that the following series converges?

a)
b)


Foundations:  
Geometric Series


Solution:

(a)

Step 1:  
First, we notice that is a geometric series.
We have
Since this series converges,
       
Step 2:  
The series is also a geometric series.
For this series,
Now, we notice

       

since
Since this series converges.

(b)

Step 1:  
First, we notice that is a geometric series.
We have
Since this series converges,
       
Step 2:  
The series is also a geometric series.
For this series,
Now, we notice

       

since
Since this series converges.


Final Answer:  
    (a)     The series converges.
    (b)     The series converges.

Return to Sample Exam