Difference between revisions of "009C Sample Midterm 2, Problem 4"

From Grad Wiki
Jump to navigation Jump to search
Line 8: Line 8:
 
!Foundations:    
 
!Foundations:    
 
|-
 
|-
|  
+
| Root Test
 
|-
 
|-
|
+
| Ratio Test
::
 
 
|-
 
|-
 
|
 
|
::
 
 
|}
 
|}
 +
  
 
'''Solution:'''
 
'''Solution:'''
Line 21: Line 20:
 
'''(a)'''
 
'''(a)'''
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
!Step 1:    
+
!Step 1:  
 +
|-
 +
|We begin by applying the Root Test.
 
|-
 
|-
|
+
|We have
 
|-
 
|-
 
|
 
|
 +
&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 +
\displaystyle{\lim_{n\rightarrow \infty} \sqrt{|a_n|}} & = & \displaystyle{\lim_{n\rightarrow \infty} \sqrt{|n^nx^n|}}\\
 +
&&\\
 +
& = & \displaystyle{\lim_{n\rightarrow \infty} |n^nx^n|^{\frac{1}{n}}}\\
 +
&&\\
 +
& = & \displaystyle{\lim_{n\rightarrow \infty} |nx|}\\
 +
&&\\
 +
& = & \displaystyle{n|x|}\\
 +
&&\\
 +
& = & \displaystyle{|x|\lim_{n\rightarrow \infty} n}\\
 +
&&\\
 +
& = & \displaystyle{\infty}
 +
\end{array}</math>
 
|}
 
|}
  
Line 31: Line 45:
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 
|-
 
|-
|
+
|This means that as long as <math>x\ne 0,</math> this series diverges.
 +
|-
 +
|Hence, the radius of convergence is <math>R=0</math> and
 +
|-
 +
|the interval of convergence is <math>\{0\}.</math>
 
|-
 
|-
 
|
 
|
Line 60: Line 78:
 
|
 
|
 
|}
 
|}
 +
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"

Revision as of 10:17, 13 February 2017

Find the radius of convergence and interval of convergence of the series.

a)
b)


Foundations:  
Root Test
Ratio Test


Solution:

(a)

Step 1:  
We begin by applying the Root Test.
We have

       

Step 2:  
This means that as long as this series diverges.
Hence, the radius of convergence is and
the interval of convergence is

(b)

Step 1:  
Step 2:  


Final Answer:  
(a)
(b)

Return to Sample Exam