Difference between revisions of "009C Sample Final 1, Problem 7"

From Grad Wiki
Jump to navigation Jump to search
Line 1: Line 1:
 
<span class="exam">A curve is given in polar coordinates by  
 
<span class="exam">A curve is given in polar coordinates by  
::::::<math>r=1+\sin\theta</math>
+
::<math>r=1+\sin\theta</math>
  
::<span class="exam">a) Sketch the curve.
+
<span class="exam">(a) Sketch the curve.
  
::<span class="exam">b) Compute <math style="vertical-align: -12px">y'=\frac{dy}{dx}</math>.
+
<span class="exam">(b) Compute <math style="vertical-align: -12px">y'=\frac{dy}{dx}</math>.
  
::<span class="exam">c) Compute <math style="vertical-align: -12px">y''=\frac{d^2y}{dx^2}</math>.
+
<span class="exam">(c) Compute <math style="vertical-align: -12px">y''=\frac{d^2y}{dx^2}</math>.
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
Line 14: Line 14:
 
|-
 
|-
 
|
 
|
::Since <math style="vertical-align: -5px">x=r\cos(\theta),~y=r\sin(\theta),</math> we have
+
&nbsp; &nbsp; &nbsp; &nbsp;Since <math style="vertical-align: -5px">x=r\cos(\theta),~y=r\sin(\theta),</math> we have
 
|-
 
|-
 
|
 
|
::<math>y'=\frac{dy}{dx}=\frac{\frac{dr}{d\theta}\sin\theta+r\cos\theta}{\frac{dr}{d\theta}\cos\theta-r\sin\theta}.</math>
+
&nbsp; &nbsp; &nbsp; &nbsp;<math>y'=\frac{dy}{dx}=\frac{\frac{dr}{d\theta}\sin\theta+r\cos\theta}{\frac{dr}{d\theta}\cos\theta-r\sin\theta}.</math>
 
|}
 
|}
 +
  
 
'''Solution:'''
 
'''Solution:'''
Line 98: Line 99:
 
|
 
|
 
|}
 
|}
 +
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Final Answer: &nbsp;  
 
!Final Answer: &nbsp;  
 
|-
 
|-
|&nbsp;&nbsp; '''(a)''' See Step 1 above for the graph.
+
|&nbsp;&nbsp; '''(a)''' &nbsp; &nbsp; See Step 1 above for the graph.
 
|-
 
|-
|&nbsp;&nbsp; '''(b)''' <math>\frac{\sin(2\theta)+\cos\theta}{\cos(2\theta)-\sin\theta}</math>
+
|&nbsp;&nbsp; '''(b)''' &nbsp; &nbsp; <math>\frac{\sin(2\theta)+\cos\theta}{\cos(2\theta)-\sin\theta}</math>
 
|-
 
|-
|&nbsp;&nbsp; '''(c)''' <math>\frac{3-3\sin\theta\cos(2\theta)+3\sin(2\theta)\cos\theta}{(\cos(2\theta)-\sin\theta)^3}</math>
+
|&nbsp;&nbsp; '''(c)''' &nbsp; &nbsp; <math>\frac{3-3\sin\theta\cos(2\theta)+3\sin(2\theta)\cos\theta}{(\cos(2\theta)-\sin\theta)^3}</math>
 
|}
 
|}
 
[[009C_Sample_Final_1|'''<u>Return to Sample Exam</u>''']]
 
[[009C_Sample_Final_1|'''<u>Return to Sample Exam</u>''']]

Revision as of 17:07, 25 February 2017

A curve is given in polar coordinates by

(a) Sketch the curve.

(b) Compute .

(c) Compute .

Foundations:  
How do you calculate for a polar curve

       Since we have

       


Solution:

(a)

Step 1:  
Insert sketch of graph


(b)

Step 1:  
First, recall we have
Since
Hence,
Step 2:  
Thus, we have

(c)

Step 1:  
We have
So, first we need to find
We have
since and
Step 2:  
Now, using the resulting formula for we get


Final Answer:  
   (a)     See Step 1 above for the graph.
   (b)    
   (c)    

Return to Sample Exam