Difference between revisions of "009C Sample Final 1, Problem 6"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
Line 7: | Line 7: | ||
|- | |- | ||
| | | | ||
− | + | <math>\sum_{n=0}^{\infty}c_n(x-a)^n</math> where <math style="vertical-align: -14px">c_n=\frac{f^{(n)}(a)}{n!}.</math> | |
|} | |} | ||
+ | |||
'''Solution:''' | '''Solution:''' | ||
Line 65: | Line 66: | ||
|- | |- | ||
| | | | ||
− | + | <math>T_4(x)=\frac{1}{2}+-1\bigg(x-\frac{\pi}{4}\bigg)+\frac{2}{3}\bigg(x-\frac{\pi}{4}\bigg)^3.</math> | |
|} | |} | ||
+ | |||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
!Final Answer: | !Final Answer: | ||
|- | |- | ||
− | | <math>\frac{1}{2}+-1\bigg(x-\frac{\pi}{4}\bigg)+\frac{2}{3}\bigg(x-\frac{\pi}{4}\bigg)^3</math> | + | | <math>\frac{1}{2}+-1\bigg(x-\frac{\pi}{4}\bigg)+\frac{2}{3}\bigg(x-\frac{\pi}{4}\bigg)^3</math> |
|} | |} | ||
[[009C_Sample_Final_1|'''<u>Return to Sample Exam</u>''']] | [[009C_Sample_Final_1|'''<u>Return to Sample Exam</u>''']] |
Revision as of 17:05, 25 February 2017
Find the Taylor polynomial of degree 4 of at .
Foundations: |
---|
The Taylor polynomial of at is |
where |
Solution:
Step 1: | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
First, we make a table to find the coefficients of the Taylor polynomial. | ||||||||||||||||||||||||
|
Step 2: | |
---|---|
Since the Taylor polynomial of degree 4 of is | |
|
Final Answer: |
---|