Difference between revisions of "009C Sample Final 1, Problem 4"

From Grad Wiki
Jump to navigation Jump to search
Line 1: Line 1:
 
<span class="exam"> Find the interval of convergence of the following series.
 
<span class="exam"> Find the interval of convergence of the following series.
  
::::::<math>\sum_{n=0}^{\infty} (-1)^n \frac{(x+2)^n}{n^2}</math>
+
::<math>\sum_{n=0}^{\infty} (-1)^n \frac{(x+2)^n}{n^2}</math>
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Foundations: &nbsp;  
 
!Foundations: &nbsp;  
 
|-
 
|-
|Recall:
+
|'''1. Ratio Test'''
 
|-
 
|-
|
+
|&nbsp; &nbsp; &nbsp; &nbsp;Let <math style="vertical-align: -7px">\sum a_n</math> be a series and <math>L=\lim_{n\rightarrow \infty}\bigg|\frac{a_{n+1}}{a_n}\bigg|.</math> Then,
::'''1. Ratio Test''' Let <math style="vertical-align: -7px">\sum a_n</math> be a series and <math>L=\lim_{n\rightarrow \infty}\bigg|\frac{a_{n+1}}{a_n}\bigg|.</math> Then,
 
 
|-
 
|-
 
|
 
|
:::If <math style="vertical-align: -1px">L<1,</math> the series is absolutely convergent.  
+
&nbsp; &nbsp; &nbsp; &nbsp;If <math style="vertical-align: -1px">L<1,</math> the series is absolutely convergent.  
 
|-
 
|-
 
|
 
|
:::If <math style="vertical-align: -1px">L>1,</math> the series is divergent.
+
&nbsp; &nbsp; &nbsp; &nbsp;If <math style="vertical-align: -1px">L>1,</math> the series is divergent.
 
|-
 
|-
 
|
 
|
:::If <math style="vertical-align: -1px">L=1,</math> the test is inconclusive.
+
&nbsp; &nbsp; &nbsp; &nbsp;If <math style="vertical-align: -1px">L=1,</math> the test is inconclusive.
 
|-
 
|-
|
+
|'''2.''' After you find the radius of convergence, you need to check the endpoints of your interval  
::'''2.''' After you find the radius of convergence, you need to check the endpoints of your interval  
 
 
|-
 
|-
 
|
 
|
:::for convergence since the Ratio Test is inconclusive when <math style="vertical-align: -1px">L=1.</math>
+
&nbsp; &nbsp; &nbsp; &nbsp;for convergence since the Ratio Test is inconclusive when <math style="vertical-align: -1px">L=1.</math>
 
|}
 
|}
 +
  
 
'''Solution:'''
 
'''Solution:'''
Line 35: Line 34:
 
|-
 
|-
 
|
 
|
::<math>\begin{array}{rcl}
+
&nbsp; &nbsp; &nbsp; &nbsp;<math>\begin{array}{rcl}
 
\displaystyle{\lim_{n \rightarrow \infty}\bigg|\frac{a_{n+1}}{a_n}\bigg|} & = & \displaystyle{\lim_{n \rightarrow \infty}\bigg|\frac{(-1)^{n+1}(x+2)^{n+1}}{(n+1)^2}}\frac{n^2}{(-1)^n(x+2)^n}\bigg|\\
 
\displaystyle{\lim_{n \rightarrow \infty}\bigg|\frac{a_{n+1}}{a_n}\bigg|} & = & \displaystyle{\lim_{n \rightarrow \infty}\bigg|\frac{(-1)^{n+1}(x+2)^{n+1}}{(n+1)^2}}\frac{n^2}{(-1)^n(x+2)^n}\bigg|\\
 
&&\\
 
&&\\
Line 64: Line 63:
 
|-
 
|-
 
|
 
|
::<math>\sum_{n=0}^{\infty} (-1)^n \frac{1}{n^2}.</math>
+
&nbsp; &nbsp; &nbsp; &nbsp;<math>\sum_{n=0}^{\infty} (-1)^n \frac{1}{n^2}.</math>
 
|-
 
|-
 
|Since <math style="vertical-align: -5px">n^2<(n+1)^2,</math> we have <math>\frac{1}{(n+1)^2}<\frac{1}{n^2}.</math> Thus, <math>\frac{1}{n^2}</math> is decreasing.
 
|Since <math style="vertical-align: -5px">n^2<(n+1)^2,</math> we have <math>\frac{1}{(n+1)^2}<\frac{1}{n^2}.</math> Thus, <math>\frac{1}{n^2}</math> is decreasing.
Line 77: Line 76:
 
|-
 
|-
 
|
 
|
::<math>\begin{array}{rcl}
+
&nbsp; &nbsp; &nbsp; &nbsp;<math>\begin{array}{rcl}
 
\displaystyle{\sum_{n=0}^{\infty} (-1)^n \frac{(-1)^n}{n^2}} & = & \displaystyle{\sum_{n=0}^{\infty} (-1)^{2n} \frac{1}{n^2}}\\
 
\displaystyle{\sum_{n=0}^{\infty} (-1)^n \frac{(-1)^n}{n^2}} & = & \displaystyle{\sum_{n=0}^{\infty} (-1)^{2n} \frac{1}{n^2}}\\
 
&&\\
 
&&\\
Line 95: Line 94:
 
!Final Answer: &nbsp;  
 
!Final Answer: &nbsp;  
 
|-
 
|-
|&nbsp;&nbsp; <math>[-3,-1]</math>
+
|&nbsp; &nbsp; &nbsp; &nbsp; <math>[-3,-1]</math>
 
|}
 
|}
 
[[009C_Sample_Final_1|'''<u>Return to Sample Exam</u>''']]
 
[[009C_Sample_Final_1|'''<u>Return to Sample Exam</u>''']]

Revision as of 16:59, 25 February 2017

Find the interval of convergence of the following series.

Foundations:  
1. Ratio Test
       Let be a series and Then,

       If the series is absolutely convergent.

       If the series is divergent.

       If the test is inconclusive.

2. After you find the radius of convergence, you need to check the endpoints of your interval

       for convergence since the Ratio Test is inconclusive when


Solution:

Step 1:  
We proceed using the ratio test to find the interval of convergence. So, we have

       

Step 2:  
So, we have Hence, our interval is But, we still need to check the endpoints of this interval
to see if they are included in the interval of convergence.
Step 3:  
First, we let Then, our series becomes

       

Since we have Thus, is decreasing.
So, converges by the Alternating Series Test.
Step 4:  
Now, we let Then, our series becomes

       

This is a convergent series by the p-test.
Step 5:  
Thus, the interval of convergence for this series is
Final Answer:  
       

Return to Sample Exam